Massively high-throughput profiling of the circulating antibody pool for identification of diagnostic signatures with utility for stroke triage

对循环抗体库进行大规模高通量分析,用于识别诊断特征并用于中风分类

基本信息

  • 批准号:
    10457459
  • 负责人:
  • 金额:
    $ 24.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-27 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT: Stroke is currently the third leading cause of death and leading cause of permanent disability in the United States. Due to the time-efficacy relationship associated with acute stroke interventions, tools which allow for accurate stroke diagnosis during triage have the potential to streamline care and improve patient outcomes. Early transport, transfer, and referral decisions are often made by emergency medical services personnel, triage nurses, and emergency physicians with limited neurological expertise using symptom-based stroke recognition scales. Unfortunately, these assessments exhibit limited accuracy in triage scenarios, and it is currently estimated that up to 30% of patients experiencing stroke are misdiagnosed at first clinician contact, leading to life threatening delays in care. As a result, there has been a push for the identification of stroke-specific blood biomarkers which could be rapidly measured at the point-of-care to help clinicians without extensive neurological expertise make better-informed early triage decisions. It is becoming increasingly evident that the peripheral immune system is intricately involved in stroke pathology, and may be targetable for the development of stroke diagnostics. Not only is there a rapid systemic inflammatory response to the acute injury, but emerging evidence suggests that peripheral immune changes may precede symptom onset and in some cases trigger the acute event itself. The peripheral blood contains up to 1018 unique antibodies targeting antigens associated with nearly every adaptive immune response an individual has experienced in their lifetime, and the repertoire of antibodies found in an individual’s blood can serve as a detailed molecular fingerprint of their immune history as well as current immune status. In the proposed investigation, we aim to identify stroke-associated alterations to the circulating antibody pool which could be used to aid in stroke recognition during triage. To address this aim, peripheral blood will be sampled from a group of consecutive patients suspected of stroke at emergency department admission. Upon final clinical diagnosis, patients will be divided into either a confirmed stroke group or a stroke mimic group. Peptide arrays comprised of 330,000 unique probes will be used to comprehensively assess the binding characteristics of each patient’s peripheral blood antibody pool, and a machine-learning approach will be used to identify a pattern of binding which can optimally discriminate between groups. This work will be the first ever to take a comprehensive approach to profiling the circulating antibody pool in stroke to globally search for disease-specific patterns of alterations; the level of throughput, in combination with the use of powerful machine-learning methods, will increase the odds of identifying diagnostically robust biomarker profiles. Furthermore, diagnostically useful probes identified via peptide array can be readily adapted for use at the point-of-care, providing a clear path to clinical use. This novel, innovative, and highly translational workflow will address an area of dire clinical need; we fully expect to identify a set of candidate peptide probes which will provide the immediate foundation for the development of a rapid point-of-care stroke triage diagnostic.
项目总结/摘要: 中风目前是美国第三大死亡原因和永久性残疾的主要原因。 由于与急性卒中干预相关的时效关系, 在分诊期间进行中风诊断有可能简化护理并改善患者的预后。早期 运输、转移和转诊决定通常由紧急医疗服务人员做出, 护士和急诊医生,神经专业知识有限, 鳞片不幸的是,这些评估在分流方案中表现出有限的准确性,并且目前 据估计,多达30%的中风患者在第一次与临床医生接触时被误诊, 危及生命的护理延误。因此,一直在推动中风特异性血液的鉴定 可以在护理点快速测量的生物标志物,以帮助临床医生,而无需广泛的神经系统疾病 专业知识可以更好地做出早期分类决策。越来越明显的是, 免疫系统复杂地参与中风病理,并且可能是中风发展的靶点 诊断不仅急性损伤会引起快速的全身炎症反应, 提示外周免疫变化可能先于症状发作,在某些情况下触发急性 事件本身。外周血中含有多达1018种独特的抗体,这些抗体靶向与近 个体一生中经历的每一次适应性免疫反应以及抗体库 可以作为他们免疫史的详细分子指纹, 目前的免疫状态。在拟议的调查中,我们的目标是确定中风相关的改变, 循环抗体库,可用于在分诊期间帮助识别中风。为了实现这一目标, 将从一组疑似卒中的连续患者中采集外周血样本 部门录取。在最终临床诊断后,患者将被分为确诊卒中组 或中风模拟组。由330,000个独特探针组成的肽阵列将用于全面 评估每个患者的外周血抗体池的结合特征,以及机器学习 方法将被用来确定一种结合模式,可以最佳地区分组之间。这项工作 将是有史以来第一个采取全面的方法来分析中风中的循环抗体库, 全球搜索特定于疾病的改变模式;吞吐量水平与使用相结合 强大的机器学习方法,将增加识别诊断上强大的生物标志物的可能性 数据区.此外,通过肽阵列鉴定的诊断上有用的探针可以容易地适用于 即时护理,为临床使用提供了明确的途径。这种新颖、创新和高度转化的工作流程 将解决一个迫切的临床需求领域;我们完全期望确定一组候选肽探针, 为快速护理点卒中分类诊断的发展提供直接基础。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grant C O'Connell其他文献

Grant C O'Connell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grant C O'Connell', 18)}}的其他基金

Investigation of brain-originating circRNAs as targets in blood-based stroke triage diagnostics
研究脑源性 circRNA 作为基于血液的中风分类诊断的靶标
  • 批准号:
    10563706
  • 财政年份:
    2023
  • 资助金额:
    $ 24.15万
  • 项目类别:
Massively high-throughput profiling of the circulating antibody pool for identification of diagnostic signatures with utility for stroke triage
对循环抗体库进行大规模高通量分析,用于识别诊断特征并用于中风分类
  • 批准号:
    10302835
  • 财政年份:
    2021
  • 资助金额:
    $ 24.15万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 24.15万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了