Mitochondrial metabolism in microbial sepsis
微生物脓毒症中的线粒体代谢
基本信息
- 批准号:10457821
- 负责人:
- 金额:$ 29.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAcetyl Coenzyme AAcetylationAcuteAnimal ModelAnti-Bacterial AgentsAnti-Inflammatory AgentsAntibacterial ResponseAntiinflammatory EffectAntisepsisBacterial InfectionsCalciumCalcium ChannelCalcium SignalingCause of DeathCell DeathCellsClinicalClinical TrialsComplexDefense MechanismsDevelopmentElectron Transport Complex IIIFoundationsFutureGene DeletionGenerationsGeneticGoalsHealthcare SystemsImmuneImmune systemImmunosuppressionImpairmentInfectionInflammasomeInflammationInflammatory ResponseIntensive Care UnitsInterleukin-1 betaKnowledgeLeadMass Spectrum AnalysisMediatingMediator of activation proteinMembraneMetabolicMetabolic PathwayMetabolismMitochondriaModelingMolecularMorbidity - disease rateMusMyeloid CellsNatural ImmunityOrgan failureOrganellesPathogenesisPathway interactionsPeripheral Blood Mononuclear CellPhagocytosisPhagolysosomePhagosomesPharmacologyPlayPreventionProductionProtein AcetylationRegimenRegulationRoleRuptureSepsisSignal TransductionSorting - Cell MovementSumSyndromeTestingTherapeuticTraumabactericidebasecalcium uniportercecal ligation puncturecell motilitycytokinecytokine release syndromeefficacious treatmentimmune activationimmune functionimprovedinnate immune functioninsightmacrophagemembermicrobialmitochondrial metabolismmortalitynew therapeutic targetnovelnovel strategiespolymicrobial sepsisprotective effectpyruvate dehydrogenaserecruitrepairedresponsesepticseptic patientssystemic inflammatory responsetherapeutic targetuptake
项目摘要
Project Summary/Abstract
Sepsis is the most common cause of death in intensive care units and represents a major burden to the US
health care system. Microbial infection and trauma are the most common triggers of acute systemic
inflammatory response that eventually leads to end organ failure and mortality in sepsis. Mitochondria, a
highly metabolically active organelle, have been shown to play an essential role in the innate immune function
and inflammatory response. Robust changes in mitochondrial metabolism (mito-metabolism) occur during
clinical and experimental sepsis. However, the signaling mechanism leading to alterations in mito-metabolism
and its functional consequence on the pathogenesis of sepsis are poorly understood. In this Proposal, we aim
to study the detrimental effects of metabolic abnormalities mediated by mitochondrial calcium signaling on the
innate immune function during microbial sepsis. Our preliminary studies identified the mitochondrial calcium
uniporter (MCU), a key calcium channel for mitochondrial calcium uptake, as an essential regulator of bacterial
killing and septic inflammation. We found that genetic ablation of MCU resulted in improved phagosomal
bacterial killing and less interleukin 1β (IL-1β) secretion due to elevated LC3-associated phagocytosis (LAP).
Mechanistically, MCU inhibits the assembly of LAP complex by promoting mitochondrial metabolite acetyl-
coenzyme A (acetyl-CoA) generation via the pyruvate dehydrogenase (PDH). Therefore, blockade of MCU or
PDH function may represent a promising therapeutic regimen for treating microbial sepsis. The goal of the
proposal is to examine the function and mechanism of mitochondrial calcium signaling-mediated mito-
metabolism on phagosomal bacterial killing and inflammation, both of which are key determinants of host
survival during microbial sepsis. We hypothesize that 1) decreased acetyl-CoA generation in Mcu-deficient
macrophages promotes LAP formation via protein acetylation-dependent mechanism; 2) enhanced LAP
formation promotes phagosome member repair mechanism to limit excessive inflammasome-mediated IL-1β
cleavage; 3) pharmacological inhibition of PDH by CPI-613 is effective in the treatment of microbial sepsis.
Cecal ligation and puncture-induced polymicrobial sepsis model will be employed to examine the role and
functions of MCU-mediated acetyl-CoA metabolism. We will test whether PDH inhibition by CPI-613 plays a
protective effect on sepsis-induced mortality, as well as sepsis-induced immunosuppression. Results of these
studies will provide novel insights into the regulation and function of mito-metabolism, which can potentially
lead to the identification of new therapeutic targets in the treatment of microbial sepsis.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haitao Wen其他文献
Haitao Wen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haitao Wen', 18)}}的其他基金
Targeting immune inhibitory molecule SUSD2 to reverse immunosuppression
靶向免疫抑制分子SUSD2逆转免疫抑制
- 批准号:
10430219 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Targeting immune inhibitory molecule SUSD2 to reverse immunosuppression
靶向免疫抑制分子SUSD2逆转免疫抑制
- 批准号:
10274585 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Targeting immune inhibitory molecule SUSD2 to reverse immunosuppression
靶向免疫抑制分子SUSD2逆转免疫抑制
- 批准号:
10631911 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Role and Mechanism of NLRX1-mediated Cell Stress Response in Insulin Resistance
NLRX1介导的细胞应激反应在胰岛素抵抗中的作用和机制
- 批准号:
8487694 - 财政年份:2013
- 资助金额:
$ 29.56万 - 项目类别:
相似海外基金
The molecular basis for how acetyl-coenzyme A links metabolism to gene expression
乙酰辅酶 A 如何将代谢与基因表达联系起来的分子基础
- 批准号:
8783415 - 财政年份:2014
- 资助金额:
$ 29.56万 - 项目类别:
The molecular basis for how acetyl-coenzyme A links metabolism to gene expression
乙酰辅酶 A 如何将代谢与基因表达联系起来的分子基础
- 批准号:
8996048 - 财政年份:2014
- 资助金额:
$ 29.56万 - 项目类别:
The molecular basis for how acetyl-coenzyme A links metabolism to gene expression
乙酰辅酶 A 如何将代谢与基因表达联系起来的分子基础
- 批准号:
9125794 - 财政年份:2014
- 资助金额:
$ 29.56万 - 项目类别: