Non-invasive Excitation and Inhibition of Neural Activity via On-Demand Magnetothermal Drug Release
通过按需磁热药物释放对神经活动进行非侵入性激发和抑制
基本信息
- 批准号:10457349
- 负责人:
- 金额:$ 26.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibody SpecificityBiologicalBrainBrain DiseasesBrain MappingCalcium ionCell SurvivalCellsCerebrumChemicalsChemistryChlorpromazineComplexDevelopmentDopamineDrug ModulationElectric ConductivityElectric StimulationElectrostaticsEpilepsyEvaluationExposure toFutureGrowthHeatingHybridsIn VitroKineticsLiquid substanceMagnetic nanoparticlesMagnetismMembraneModificationMolecular WeightNanostructuresNeural InhibitionNeuronal DysfunctionNeuronsOligonucleotidesParkinson DiseasePharmaceutical PreparationsPharmacologyPharmacotherapyPolymer ChemistryPolymersPopulationPropertyReportingResearch Project GrantsSignal TransductionSpecificityStimulusSurfaceSystemTechniquesTechnologyTemperatureTimeTissuesTransgenesTranslationsWorkbiocompatible polymerblood-brain barrier permeabilizationcell typechemical propertyclinical translationclinically relevantcombinatorialcombinatorial chemistrydopaminergic neurondosageethylene glycolfluorescence imagingheat stimulusimplantable deviceimprovedin vitro Assayin vitro activityin vivoinhibitoriron oxidemagnetic fieldmind controlminimally invasivenanomaterialsnanoparticlenanoscalenervous system disorderneural circuitneural networkneural repairneural stimulationneuroregulationneurotransmissionnoveloptogeneticsphysical propertyplasmonicsrelating to nervous systemresponseside effecttherapy designwireless
项目摘要
Project Summary/Abstract
Cell-type specific manipulation of neural circuits is required for the treatment of neurological disorders such as
epilepsy and Parkinson’s disease. Precise control of neural circuits will enable the development of
neuromodulation therapies for these debilitating conditions. Existing technologies to control neural activity offer
limited possibilities. Manipulation of brain circuits via direct drug treatment is restricted by the selective
permeability of the blood-brain barrier, the rapid clearance of cerebral fluids and the lack of specificity which
results in poor response to drugs and undesirable side effects. Electrical stimulation and optogenetics have open
the possibility of repairing neural dysfunction through direct control of brain circuit dynamics. However, both
technologies require implantable devices that are damaging to biological tissues. Recently, the heat dissipation
by nanomaterials, particularly magnetic nanoparticles (MNPs) and plasmonic nanostructures, has been
proposed for the wireless control of cellular signaling using external stimuli. The weak magnetic properties and
low electrical conductivity of tissue allow alternating magnetic fields (AMFs) to reach deep into the body, making
hysteresis heating of MNPs particularly promising for the treatment of brain disorders. This research grant will
develop a novel wireless pharmacological brain stimulation approach that depends on magnetic
nanoparticles (MNPs) heating effects to release neuromodulatory compounds from temperature-sensitive
polymers grafted on the surface of MNPs. The developed technology will be suitable for drug release in multiple
on-demand dosages, which it is required for neural activity stimulation. Additionally, we will tailor polymer
surface chemistry for the combinatorial release of neurostimulator-inhibitor pairs to allow modulation of brain
circuit signals. Preliminary results demonstrate: 1) the heat dissipated by MNPs under AMFs is sufficient for the
rapid and complete release of a payload from MNP surfaces, 2) MNPs targeting to neuronal membranes via
antibody specificity, followed by magnetothermal drug treatment that allows for one-time excitation of neural
activity, and 3) the precise control of polymer growth from the surface of MNPs. This research grant drives new
advances in stimuli-responsive hybrid nanoparticle systems for the pharmacological modulation of neural activity.
Wireless magnetothermal release of dopamine and chlorpromazine from polymer coated MNPs is expected to
excite and inhibit activity of dopaminergic neurons. This system will be optimized for on-demand multiple
dosages release by triggering heat response with AMFs. Finally, the functional properties of clinically-relevant
neural modulation by magnetothermal drug release will be evaluated through in vitro assays. Magnetothermal
modulation of neural activity shows considerable promise as a powerful pharmacological technology that can be
applied to restore brain functions, and in single-cell manipulation settings for the better understanding of neural
circuits. Future directions of this work include the development of a magnetothermal platform that allow in vivo
pharmacological modulation of neural activity.
项目总结/摘要
神经回路的细胞类型特异性操纵是治疗神经系统疾病所必需的,
癫痫和帕金森病。神经回路的精确控制将使
神经调节疗法来治疗这些使人衰弱的病症。控制神经活动的现有技术提供了
可能性有限。通过直接药物治疗来操纵大脑回路受到选择性的限制。
血脑屏障的通透性、脑液的快速清除以及缺乏特异性,
导致对药物的不良反应和不良副作用。电刺激和光遗传学具有开放性
通过直接控制脑回路动力学来修复神经功能障碍的可能性。但无论
这些技术需要对生物组织有损害的可植入装置。最近,散热
纳米材料,特别是磁性纳米颗粒(MNP)和等离子体纳米结构,
提出了使用外部刺激的蜂窝信号的无线控制。弱磁性和
组织的低电导率允许交变磁场(AMF)深入人体,
MNP的滞后加热特别有希望用于治疗脑部疾病。这项研究经费将
开发一种新的无线药理学脑刺激方法,
纳米颗粒(MNP)的加热效应,以从温度敏感的神经细胞释放神经调节化合物。
接枝在MNP表面的聚合物。开发的技术将适用于多种药物释放
按需剂量,这是神经活动刺激所需的。此外,我们还将定制聚合物
用于神经刺激物-抑制剂对的组合释放以允许脑调节的表面化学
电路信号初步结果表明:1)MNP在AMF下的散热量足够用于
从MNP表面快速和完全释放有效载荷,2)MNP靶向神经元膜,
抗体特异性,然后进行磁热药物治疗,允许一次性兴奋神经元,
活性,和3)从MNP的表面的聚合物生长的精确控制。这项研究资助推动了新的
刺激响应混合纳米颗粒系统的神经活动的药理学调制的进展。
从聚合物包覆的MNP无线磁热释放多巴胺和氯丙嗪,
兴奋和抑制多巴胺能神经元的活性。该系统将针对按需多个
剂量通过AMF触发热反应释放。最后,临床相关的功能特性
将通过体外测定来评价通过磁热药物释放的神经调节。磁热
调节神经活动显示出相当大的希望,作为一种强大的药理学技术,
应用于恢复大脑功能,并在单细胞操作设置为更好地了解神经
电路.这项工作的未来方向包括开发一个磁热平台,
神经活动的药理学调节。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gold Nanomaterial System That Enables Dual Photothermal and Chemotherapy for Breast Cancer.
- DOI:10.3390/pharmaceutics15092198
- 发表时间:2023-08-25
- 期刊:
- 影响因子:5.4
- 作者:Wang L;Shrestha B;Brey EM;Tang L
- 通讯作者:Tang L
Smart Nanoparticles for Chemo-Based Combinational Therapy.
- DOI:10.3390/pharmaceutics13060853
- 发表时间:2021-06-08
- 期刊:
- 影响因子:5.4
- 作者:Shrestha B;Wang L;Brey EM;Uribe GR;Tang L
- 通讯作者:Tang L
Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine.
- DOI:10.3390/pharmaceutics13060792
- 发表时间:2021-05-26
- 期刊:
- 影响因子:5.4
- 作者:Muzzio N;Moya S;Romero G
- 通讯作者:Romero G
Phase transition characterization of poly(oligo(ethylene glycol)methyl ether methacrylate) brushes using the quartz crystal microbalance with dissipation.
- DOI:10.1039/d0sm02169e
- 发表时间:2021-03-11
- 期刊:
- 影响因子:3.4
- 作者:Guntnur RT;Muzzio N;Morales M;Romero G
- 通讯作者:Romero G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriela Romero Uribe其他文献
Gabriela Romero Uribe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriela Romero Uribe', 18)}}的其他基金
WIRELESS MAGNETO-MECHANICAL CONTROL OF NEURAL ACTIVITY MEDIATED BY MAGNETIC NANODISCS
磁性纳米圆盘介导的神经活动的无线磁机械控制
- 批准号:
10644156 - 财政年份:2022
- 资助金额:
$ 26.25万 - 项目类别:
Non-invasive, Transgene-free, on-demand Pharmacological Modulation of Neural Activity
非侵入性、非转基因、按需药理调节神经活动
- 批准号:
9892391 - 财政年份:2021
- 资助金额:
$ 26.25万 - 项目类别:
Non-invasive, Transgene-free, on-demand Pharmacological Modulation of Neural Activity
非侵入性、非转基因、按需药理调节神经活动
- 批准号:
10322083 - 财政年份:2021
- 资助金额:
$ 26.25万 - 项目类别:
Non-invasive Excitation and Inhibition of Neural Activity via On-Demand Magnetothermal Drug Release
通过按需磁热药物释放对神经活动进行非侵入性激发和抑制
- 批准号:
10226216 - 财政年份:2019
- 资助金额:
$ 26.25万 - 项目类别:
相似海外基金
Optimising antibody specificity and efficacy through Fc engineering
通过 Fc 工程优化抗体特异性和功效
- 批准号:
BB/N503927/1 - 财政年份:2015
- 资助金额:
$ 26.25万 - 项目类别:
Training Grant
Integrating Experiment and Theory to Characterize Diagnostic Antibody Specificity
结合实验和理论来表征诊断抗体特异性
- 批准号:
7994664 - 财政年份:2010
- 资助金额:
$ 26.25万 - 项目类别:
Integrating Experiment and Theory to Characterize Diagnostic Antibody Specificity
结合实验和理论来表征诊断抗体特异性
- 批准号:
8136201 - 财政年份:2010
- 资助金额:
$ 26.25万 - 项目类别:
Integrating Experiment and Theory to Characterize Diagnostic Antibody Specificity
结合实验和理论来表征诊断抗体特异性
- 批准号:
8324720 - 财政年份:2010
- 资助金额:
$ 26.25万 - 项目类别:
Integrating Experiment and Theory to Characterize Diagnostic Antibody Specificity
结合实验和理论来表征诊断抗体特异性
- 批准号:
8537214 - 财政年份:2010
- 资助金额:
$ 26.25万 - 项目类别:
Integrating Experiment and Theory to Characterize Diagnostic Antibody Specificity
结合实验和理论来表征诊断抗体特异性
- 批准号:
8328875 - 财政年份:2010
- 资助金额:
$ 26.25万 - 项目类别:
Quantitative Serum Antibody Specificity Screening in Celiac Disease
乳糜泻血清抗体特异性定量筛查
- 批准号:
7531456 - 财政年份:2008
- 资助金额:
$ 26.25万 - 项目类别:
Quantitative Serum Antibody Specificity Screening in Celiac Disease
乳糜泻血清抗体特异性定量筛查
- 批准号:
7673756 - 财政年份:2008
- 资助金额:
$ 26.25万 - 项目类别:
CARBOHYDRATES AND GLYCOPROTEINS IN ANTIBODY SPECIFICITY AND EFFECTOR MECHANISMS
抗体特异性和效应机制中的碳水化合物和糖蛋白
- 批准号:
6978238 - 财政年份:2004
- 资助金额:
$ 26.25万 - 项目类别:
HLA-D antigens, T cell epitopes and antibody specificity in SLE
SLE 中的 HLA-D 抗原、T 细胞表位和抗体特异性
- 批准号:
6663942 - 财政年份:2002
- 资助金额:
$ 26.25万 - 项目类别: