Non-invasive, Transgene-free, on-demand Pharmacological Modulation of Neural Activity
非侵入性、非转基因、按需药理调节神经活动
基本信息
- 批准号:10322083
- 负责人:
- 金额:$ 21.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAntibodiesAntibody SpecificityBiologicalBrainBrain DiseasesBrain MappingCalcium ionCellsCerebrumChemicalsChemistryChlorpromazineComplexCorpus striatum structureCustomDependenceDetectionDevelopmentDopamineDrug ControlsElectric ConductivityElectric StimulationEngineeringEpilepsyFeedbackFutureGoldGrowthHeatingHybridsLiquid substanceMagnetic nanoparticlesMagnetismMediatingMembraneModelingModificationMonitorNanoconjugateNanostructuresNatureNeural InhibitionNeuronal DysfunctionNeuronsOligonucleotidesPatch-Clamp TechniquesPharmaceutical PreparationsPharmacologyPharmacotherapyPhosphoproteinsPolymersPopulationProcessPropertyRattusReportingResearch Project GrantsSignal TransductionSpecificityStimulusSurfaceSystemTechniquesTechnologyTemperatureTimeTissuesTransgenesTranslationsWorkautism spectrum disorderbasebiocompatible polymerblood-brain barrier permeabilizationbrain tissuecell typeclinical translationclinically relevantcombinatorialcontrolled releasedesigndopaminergic neurondosageeffectiveness validationethylene glycolfluorescence imagingimage guidedimplantable deviceimprovedin vitro Modelin vitro activityin vivoiron oxidemagnetic fieldmind controlnanomaterialsnanoparticlenanorodnanoscalenervous system disorderneural circuitneural networkneural repairneural stimulationneuroregulationneurotransmissionnoveloptoacoustic tomographyoptogeneticspersonalized medicinephotoacoustic imagingplasmonicsrelating to nervous systemresponseside effecttissue phantomwireless
项目摘要
PROJECT SUMMARY/ABSTRACT
Cell-type specific manipulation of neural circuits is required for the treatment of neurological disorders such as
epilepsy and autism. Existing technologies to control neural activity offer limited possibilities. Manipulation of
brain circuits via direct drug treatment is restricted by the selective permeability of the blood-brain barrier, the
rapid clearance of cerebral fluids and the lack of specificity, which results in poor response to drugs and
undesirable side effects. Electrical stimulation and optogenetics have open the possibility of repairing neural
dysfunction through direct control of brain circuit dynamics. However, both technologies require implantable
devices that are damaging to biological tissues. Recently, the heat dissipation by nanomaterials, particularly
magnetic nanoparticles (MNPs) and plasmonic nanostructures, has been proposed for the wireless control of
cellular signaling using external stimuli. The weak magnetic properties and low electrical conductivity of tissue
allow alternating magnetic fields (AMFs) to reach deep into the body, making hysteresis heating of MNPs
particularly promising for the treatment of brain disorders. This research grant will develop a novel wireless
pharmacological brain modulation approach that depends on MNPs heating effects to release
neuromodulatory compounds from temperature-sensitive polymers grafted on the surface of MNPs.
Additionally, we will fabricate a nanoconjugate composed of surface engineered MNPs and gold nanorods
(GNRs) for photoacoustic tomography (PAT)-guided, magnetothermally-controlled release of neuromodulatory
compounds. Preliminary results demonstrate: 1) the heat dissipated by MNPs under AMFs is sufficient for the
complete release of a payload from MNP surfaces, 2) MNPs targeting to neuronal membranes via antibody
specificity, followed by magnetothermal drug treatment that allows for excitation of neural activity, and 3) the
precise control of polymer growth from the surface of MNPs. This research grant drives new advances in stimuli-
responsive hybrid nanoparticle systems for personalized pharmacological modulation of neural activity. Wireless
magnetothermal release of dopamine and chlorpromazine from polymer coated MNPs is expected to excite and
inhibit activity of dopaminergic neurons. Taking advantage of GNRs-mediated PAT, this system will be
customized for on-demand release in multiple dosages by triggering heat response with AMFs. Finally, the
functional properties of clinically-relevant neural modulation by magnetothermal drug release will be evaluated
through in vitro models and rat brains. Magnetothermal modulation of neural activity shows considerable promise
as a powerful pharmacological technology that can be applied to restore brain functions, and in single-cell
manipulation settings for the better understanding of neural circuits. Future directions of this work include the
development of a magnetothermal platform that allow in vivo PAT-monitored pharmacological modulation of
neural activity.
项目概要/摘要
治疗神经系统疾病需要对神经回路进行细胞类型特异性操作,例如
癫痫和自闭症。现有的控制神经活动的技术提供的可能性有限。操纵
通过直接药物治疗的脑回路受到血脑屏障的选择性通透性的限制,
脑液清除速度快且缺乏特异性,导致对药物和药物反应不佳
不良副作用。电刺激和光遗传学开启了修复神经的可能性
通过直接控制大脑回路动态来实现功能障碍。然而,这两种技术都需要植入式
损坏生物组织的设备。近年来,纳米材料的散热,特别是
磁性纳米粒子(MNP)和等离子体纳米结构,已被提议用于无线控制
使用外部刺激的细胞信号传导。组织的弱磁性和低电导率
允许交变磁场 (AMF) 深入人体,使 MNP 产生磁滞加热
对于治疗脑部疾病特别有希望。该研究经费将开发一种新型无线
依赖 MNP 加热效应释放的药理脑调节方法
来自接枝在 MNP 表面的温度敏感聚合物的神经调节化合物。
此外,我们将制造由表面工程 MNP 和金纳米棒组成的纳米复合物
(GNR)用于光声断层扫描(PAT)引导的磁热控制神经调节释放
化合物。初步结果表明:1)AMF 下 MNP 散发的热量足以满足
从 MNP 表面完全释放有效负载,2) MNP 通过抗体靶向神经元膜
特异性,然后进行磁热药物治疗,以激发神经活动,以及 3)
精确控制聚合物从 MNP 表面的生长。这项研究资助推动了刺激方面的新进展
用于个性化药理学调节神经活动的响应性混合纳米颗粒系统。无线的
从聚合物涂层的 MNP 中磁热释放多巴胺和氯丙嗪预计会激发和
抑制多巴胺能神经元的活性。利用 GNR 介导的 PAT,该系统将
通过 AMF 触发热响应,可定制为多种剂量的按需释放。最后,
将评估磁热药物释放的临床相关神经调节的功能特性
通过体外模型和大鼠大脑。神经活动的磁热调节显示出巨大的前景
作为一种强大的药理技术,可用于恢复大脑功能,并且在单细胞中
操作设置可以更好地理解神经回路。这项工作的未来方向包括
开发磁热平台,允许体内 PAT 监测的药理调节
神经活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriela Romero Uribe其他文献
Gabriela Romero Uribe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriela Romero Uribe', 18)}}的其他基金
WIRELESS MAGNETO-MECHANICAL CONTROL OF NEURAL ACTIVITY MEDIATED BY MAGNETIC NANODISCS
磁性纳米圆盘介导的神经活动的无线磁机械控制
- 批准号:
10644156 - 财政年份:2022
- 资助金额:
$ 21.4万 - 项目类别:
Non-invasive, Transgene-free, on-demand Pharmacological Modulation of Neural Activity
非侵入性、非转基因、按需药理调节神经活动
- 批准号:
9892391 - 财政年份:2021
- 资助金额:
$ 21.4万 - 项目类别:
Non-invasive Excitation and Inhibition of Neural Activity via On-Demand Magnetothermal Drug Release
通过按需磁热药物释放对神经活动进行非侵入性激发和抑制
- 批准号:
10457349 - 财政年份:2019
- 资助金额:
$ 21.4万 - 项目类别:
Non-invasive Excitation and Inhibition of Neural Activity via On-Demand Magnetothermal Drug Release
通过按需磁热药物释放对神经活动进行非侵入性激发和抑制
- 批准号:
10226216 - 财政年份:2019
- 资助金额:
$ 21.4万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Research Grant














{{item.name}}会员




