Auditory cortical processing of self-generated sounds
自生声音的听觉皮层处理
基本信息
- 批准号:10458817
- 负责人:
- 金额:$ 7.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-09 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAuditoryAuditory HallucinationAuditory areaAugmented RealityBehaviorBehavioralBrainCalciumCellsChronicComplexComprehensionDiseaseElectrophysiology (science)Experimental ModelsHealthHearingHourHumanImageInterneuronsLearningLifeMasticationMeasuresMediatingMissionMonitorMotorMotor CortexMovementMusMusicNervous system structureNeuronsOutcomePathologyPersonsPharmacologyPhysiologicalPhysiologyPlayPresynaptic TerminalsProcessResearchRoleSchizophreniaSensoryShapesSignal TransductionSiteSongbirdsSpeechSystemTechniquesTestingTinnitusTrainingUnited States National Institutes of HealthWalkingauditory comprehensionauditory pathwaybehavior changebrain circuitrycongenital hearing lossdesignexpectationexperienceexperimental studyflexibilityhearing impairmentin vivoinhibitory neuroninnovationinsightlife historymotor disorderneural circuitnormal hearingoptogeneticsprogramsrecruitrelating to nervous systemresponsesoundtooltwo-photon
项目摘要
Project Summary
Even if you’re not a musical genius, each and every one of us is still a highly acoustic person. Speech and
music are the most obvious sounds we make. But almost every other movement we make produces sounds,
too (typing, walking, chewing, shutting a car door). In fact, navigating the world requires us to be able to
detect, recognize, and predict the sounds of our own actions. The fact that we don’t notice most of the
sounds we make speaks wonders to how well our brains can predict them in the first place. Malfunctioning of
the same brain circuitry that normally anticipates the sounds of our actions has been implicated and disorders
including tinnitus and schizophrenia. Understanding how the brain learns to anticipate the sounds of our
actions is therefore key to understanding brain function during both health and disease. This proposal
describes experiments aimed at understanding how auditory and motor systems interact during sound
generating behaviors to anticipate the sounds our movements make. The experiments outlined in this
proposal incorporate a host of innovative techniques. These include closed-loop augmented reality, large
scale physiological recordings during behavior, calcium imaging, and optogenetics. The results of these
experiments will help us understand how circuits of neurons within the brain learn to anticipate the sounds
our movements make.
The significance of the proposed research to the NIH mission is four-fold. First, this research can inform how
the nervous system mediates normal hearing during sound-generating movements, which is essential to
speech comprehension and learning, among other skilled, auditory-guided behaviors (e.g. musicianship).
Second, dysfunction of this motor to auditory interaction at the cortical level is thought to drive auditory
hallucinations in diseases including tinnitus and schizophrenia; characterizing motor-auditory interactions is a
necessary step to understand the genesis of these pathologies and to ultimately design appropriate
therapies. Third, an understanding of how motor-auditory circuits change with experience may provide
insights into how these circuits can be manipulated either through perceptual training or direct manipulation of
neural activity to facilitate auditory comprehension in the face of hearing loss.
项目概要
即使你不是音乐天才,我们每个人仍然是一个非常有声学的人。演讲和
音乐是我们发出的最明显的声音。但几乎我们所做的所有其他动作都会产生声音,
也是如此(打字、走路、咀嚼、关车门)。事实上,环游世界需要我们能够
检测、识别和预测我们自己行为的声音。事实上,我们大多数都没有注意到
我们发出的声音说明了我们的大脑能够如何准确地预测它们。故障
通常预测我们动作的声音的相同大脑回路已受到牵连并且出现紊乱
包括耳鸣和精神分裂症。了解大脑如何学习预测我们的声音
因此,行为是了解健康和疾病期间大脑功能的关键。这个提议
描述了旨在了解听觉和运动系统在声音过程中如何相互作用的实验
产生行为来预测我们动作发出的声音。本文概述的实验
提案融合了许多创新技术。其中包括闭环增强现实、大型
缩放行为、钙成像和光遗传学过程中的生理记录。这些结果
实验将帮助我们了解大脑内的神经元回路如何学习预测声音
我们的动作使。
拟议的研究对 NIH 使命有四重意义。首先,这项研究可以告诉我们如何
神经系统在发声运动期间调节正常听力,这对于
言语理解和学习,以及其他熟练的、听觉引导的行为(例如音乐才能)。
其次,皮质水平上这种运动与听觉相互作用的功能障碍被认为会驱动听觉
疾病引起的幻觉,包括耳鸣和精神分裂症;描述运动-听觉相互作用的特征是
了解这些病理学的起源并最终设计适当的必要步骤
疗法。第三,了解运动听觉回路如何随经验而变化可能会提供帮助
深入了解如何通过感知训练或直接操纵来操纵这些电路
面对听力损失时促进听觉理解的神经活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Michael Schneider其他文献
David Michael Schneider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Michael Schneider', 18)}}的其他基金
Auditory cortical processing of self-generated sounds
自生声音的听觉皮层处理
- 批准号:
10208853 - 财政年份:2020
- 资助金额:
$ 7.47万 - 项目类别:
Auditory cortical processing of self-generated sounds
自生声音的听觉皮层处理
- 批准号:
10594630 - 财政年份:2020
- 资助金额:
$ 7.47万 - 项目类别:
Auditory cortical processing of self-generated sounds
自生声音的听觉皮层处理
- 批准号:
10034033 - 财政年份:2020
- 资助金额:
$ 7.47万 - 项目类别:
Auditory cortical processing of self-generated sounds
自生声音的听觉皮层处理
- 批准号:
10433923 - 财政年份:2020
- 资助金额:
$ 7.47万 - 项目类别:
Auditory cortical processing of self-generated sounds
自生声音的听觉皮层处理
- 批准号:
10728443 - 财政年份:2020
- 资助金额:
$ 7.47万 - 项目类别:
Auditory cortical processing of self-generated sounds
自生声音的听觉皮层处理
- 批准号:
10641728 - 财政年份:2020
- 资助金额:
$ 7.47万 - 项目类别:
Discrimination of communication sounds in auditory scenes
听觉场景中通信声音的辨别
- 批准号:
8209232 - 财政年份:2010
- 资助金额:
$ 7.47万 - 项目类别:
Discrimination of communication sounds in auditory scenes
听觉场景中通信声音的辨别
- 批准号:
8011433 - 财政年份:2010
- 资助金额:
$ 7.47万 - 项目类别:
相似海外基金
In the middle of the swarm: neuromodulation of the auditory function in malaria mosquitoes
在群体中间:疟疾蚊子听觉功能的神经调节
- 批准号:
MR/Y011732/1 - 财政年份:2024
- 资助金额:
$ 7.47万 - 项目类别:
Fellowship
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 7.47万 - 项目类别:
Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
- 批准号:
24K03872 - 财政年份:2024
- 资助金额:
$ 7.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Impact of Children's Auditory Technology (iCAT)
儿童听觉技术 (iCAT) 的影响
- 批准号:
MR/X035999/1 - 财政年份:2024
- 资助金额:
$ 7.47万 - 项目类别:
Fellowship
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 7.47万 - 项目类别:
Uncovering the Functional Effects of Neurotrophins in the Auditory Brainstem
揭示神经营养素对听觉脑干的功能影响
- 批准号:
10823506 - 财政年份:2024
- 资助金额:
$ 7.47万 - 项目类别:
Auditory Cortex Plasticity Following Deafness
耳聋后的听觉皮层可塑性
- 批准号:
478943 - 财政年份:2023
- 资助金额:
$ 7.47万 - 项目类别:
Operating Grants
Optimization of auditory temporal information processing mechanisms through the development of children with cochlear implants
通过人工耳蜗植入儿童的发育优化听觉时间信息处理机制
- 批准号:
23H01063 - 财政年份:2023
- 资助金额:
$ 7.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Signal Processing Along the Auditory Pathway: Changes Following Noise Exposure
沿着听觉通路的信号处理:噪声暴露后的变化
- 批准号:
10536262 - 财政年份:2023
- 资助金额:
$ 7.47万 - 项目类别:
In vivo investigation of spontaneous activity in the prehearing mammalian auditory system
哺乳动物听力前听觉系统自发活动的体内研究
- 批准号:
2881096 - 财政年份:2023
- 资助金额:
$ 7.47万 - 项目类别:
Studentship