Investigating the Role of Shear Stress in Coronary Artery Development
研究剪切应力在冠状动脉发育中的作用
基本信息
- 批准号:10462477
- 负责人:
- 金额:$ 1.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsArteriesBiochemicalBiological ModelsBiologyBlood VesselsBlood capillariesBlood flowCXCR4 ReceptorsCapillary Endothelial CellCardiacCause of DeathCell Differentiation processClinical TrialsConfocal MicroscopyCoronaryCoronary ArteriosclerosisCoronary arteryDataDevelopmentDiseaseEndothelial CellsEndotheliumEnvironmentFlow CytometryGenesGenetically Engineered MouseGeometryGoalsHeartHeart failureHumanImmunofluorescence MicroscopyIn VitroIndividualLaboratoriesLeukocytesMeasurementMeasuresModelingMolecularMorbidity - disease rateMosaicismMusMyocardial InfarctionMyocardial IschemiaNatural regenerationNitric OxidePerfusionPhenotypePluripotent Stem CellsPopulationProcessProductionReceptor SignalingResearchRoleSignal TransductionSpecific qualifier valueSystemTestingTherapeuticTissue EngineeringTissuesTo specifyUmbilical veinUp-RegulationWorkcell motilitychemokineendothelial stem cellexperimental studygene therapyhuman modelhuman pluripotent stem cellhuman stem cellsin vitro Modelin vivoinsightmigrationmortalitymouse geneticsnovelprogramsrecruitresponseshear stressskillsstem cell differentiationstem cell modelstem cells
项目摘要
PROJECT SUMMARY/ABSTRACT
Coronary artery disease (CAD), the leading cause of death in the U.S., is caused by a narrowing of coronary
arteries, the result of which is reduced cardiac perfusion and potentially myocardial infarction and/or heart failure.
One promising approach to treating CAD is to regenerate arteries and restore blood flow to ischemic heart tissue.
In order to make arterial regeneration a reality for CAD treatment, however, we need a more detailed
understanding of how arteries are formed. Previous studies indicate that exposure of endothelial cells (ECs) to
blood flow is critical for coronary artery development. Coronary artery formation is a stepwise process involving
1) specification of ECs to an arterial phenotype and 2) migration of capillary ECs into developing arteries. The
mechanisms by which blood flow stimulates each of these morphogenic processes are unclear. Previous studies
have shown that exposing cultured ECs to shear stress leads to upregulation of artery-specific genes, one key
step in arterial EC specification. Furthermore, findings from our laboratory and others have shown that
expression of the chemokine Cxcl12 is enriched in the arterial endothelium, a high shear stress environment.
We also found that Cxcl12-Cxcr4 (Cxcl12 receptor) signaling promotes the migration of ECs against the direction
of flow in vitro. These observations have led me to hypothesize that shear stress both fully arterializes progenitor
ECs and stimulates them to release chemokines which attract nearby ECs to the developing artery. I will test
this hypothesis by addressing the following Specific Aims. In Specific Aim 1, I will determine the effects of shear
stress on arterial specification of ECs. To accomplish this goal, I will utilize a novel in vitro system of human
arterial differentiation in which pure populations of arterial ECs can be generated from pluripotent stem cells
treated with arterializing biochemical signals. Measuring arterial EC specification in response to different
combinations of shear stress and arterializing biochemical signals will reveal molecular mechanisms by which
shear stress drives ECs towards an arterial fate. In Specific Aim 2, I will determine the role of chemokines in
orchestrating flow-induced EC migration in vivo. Namely, I will perturb EC Cxcl12 – Cxcr4 signaling by using
mice in which either Cxcl12 is deleted from arterial ECs or Cxcr4 is deleted from capillary ECs. Assessing
coronary artery formation in these mice will allow me to determine whether arterial Cxcl12 – capillary Cxcr4
signaling directs the migration of ECs from environments of low (capillary) to high (artery) shear stress. Results
from these studies will generate substantial insight into the mechanisms by which shear stress promotes arterial
specification and coronary artery remodeling. Findings from this work may be leveraged therapeutically to
develop strategies for regenerating arteries in vivo or generating tissue-engineered arteries in vitro.
项目总结/摘要
冠状动脉疾病(CAD)是美国的主要死亡原因,是由冠状动脉狭窄引起的
其结果是心脏灌注减少和潜在的心肌梗塞和/或心力衰竭。
治疗CAD的一种有希望的方法是再生动脉并恢复缺血心脏组织的血流。
然而,为了使动脉再生成为CAD治疗的现实,我们需要更详细的
了解动脉是如何形成的以前的研究表明,内皮细胞(EC)暴露于
血流对于冠状动脉的发展是至关重要的。冠状动脉形成是一个逐步的过程,
1)2)EC向动脉表型的特化和2)毛细血管EC向发育中的动脉中的迁移。的
血流刺激这些形态发生过程的机制尚不清楚。以前的研究
已经表明,将培养的内皮细胞暴露于剪切应力会导致动脉特异性基因的上调,这是一个关键,
动脉EC规范中的步骤。此外,我们实验室和其他机构的研究结果表明,
趋化因子Cxcl 12的表达在动脉内皮(高剪切应力环境)中富集。
我们还发现,Cxcl 12-Cxcr 4(Cxcl 12受体)信号通路促进内皮细胞逆着
of flow流in vitro体外.这些观察使我假设剪切力使祖细胞完全动脉化
内皮细胞并刺激它们释放趋化因子,趋化因子吸引附近的内皮细胞到发育中的动脉。我将测试
通过解决以下具体目标来实现这一假设。在具体目标1中,我将确定剪切的影响
强调EC的动脉规格。为了实现这一目标,我将利用一种新型的人类体外系统
动脉分化,其中可以从多能干细胞产生纯的动脉EC群
用动脉化生化信号治疗测量动脉EC规格以响应不同的
剪切应力和动脉化生化信号的组合将揭示分子机制,
剪切应力驱使EC朝向动脉命运。在具体目标2中,我将确定趋化因子在
协调体内流动诱导的EC迁移。也就是说,我将通过使用以下方法干扰EC Cxcl 12-Cxcr 4信号传导:
其中Cxc 112从动脉EC中缺失或Cxcr 4从毛细血管EC中缺失的小鼠。评估
这些小鼠的冠状动脉形成将使我能够确定动脉Cxcl 12-毛细血管Cxcr 4
信号传导引导EC从低(毛细血管)剪切应力环境迁移到高(动脉)剪切应力环境。结果
从这些研究中将产生大量的洞察机制,剪切应力促进动脉
规范和冠状动脉重塑。这项工作的发现可以在治疗上加以利用,
开发在体内再生动脉或在体外生成组织工程动脉的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Miller Williams其他文献
Ian Miller Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Miller Williams', 18)}}的其他基金
Investigating the Role of Shear Stress in Coronary Artery Development
研究剪切应力在冠状动脉发育中的作用
- 批准号:
10066608 - 财政年份:2020
- 资助金额:
$ 1.07万 - 项目类别:
Investigation of the mechanisms regulating endothelial insulin transport
内皮胰岛素转运调节机制的研究
- 批准号:
9354181 - 财政年份:2016
- 资助金额:
$ 1.07万 - 项目类别:
Investigation of the mechanisms regulating endothelial insulin transport
内皮胰岛素转运调节机制的研究
- 批准号:
9257125 - 财政年份:2016
- 资助金额:
$ 1.07万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 1.07万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 1.07万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 1.07万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 1.07万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 1.07万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 1.07万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 1.07万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 1.07万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 1.07万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 1.07万 - 项目类别: