S-nitrosylation signaling in asthma
哮喘中的 S-亚硝基化信号传导
基本信息
- 批准号:10457996
- 负责人:
- 金额:$ 40.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:ADRBK1 geneAcuteAdrenergic AgentsAffectAgonistAir MovementsAmericanArrestinsAsthmaBiochemistryBronchodilator AgentsCardiacCell surfaceCellsChronicClinicalCollaborationsComplementComplexCoupledCysteineDataDevelopmentDiagnosisEnzymesEpithelial CellsEventExcisionExhibitsFunctional disorderG protein coupled receptor kinaseG-Protein-Coupled ReceptorsGTP-Binding ProteinsGeneticGlutathioneGlutathione ReductaseHeightHeterotrimeric GTP-Binding ProteinsHomeostasisHumanInhalationInjuryInterventionKineticsKnock-inLinkLungMaintenanceMediatingMediator of activation proteinModelingMolecularMolecular WeightMusMutant Strains MiceMutateMutationNitric OxideNitric Oxide SynthaseOxidation-ReductionOxidoreductasePathogenesisPathologyPathway interactionsPatientsPharmaceutical PreparationsPhosphorylationPhosphotransferasesPhysiologyPoint MutationPositioning AttributePost-Translational Protein ProcessingProteinsPublishingPulmonary Function Test/Forced Expiratory Volume 1RegulationResistanceRoleS-NitrosoglutathioneS-NitrosothiolsSKIL geneSamplingSignal PathwaySignal TransductionSingle Nucleotide PolymorphismSiteSmooth Muscle MyocytesSulfhydryl CompoundsSystemTachyphylaxisTestingWorkairway hyperresponsivenessairway inflammationairway remodelingarrestin 1arrestin 2asthma modelasthmaticasthmatic patientbasebench to bedsidebeta-2 Adrenergic Receptorsbeta-arrestinbiological systemsclinically relevantcohortcostdesensitizationefficacy testingimprovedinhibitorinnovationmortalitymouse modelpatient subsetspersonalized approachpre-clinicalpreservationpreventprogramsprotective effectprotein functionpulmonary functionreceptorsynergism
项目摘要
PROJECT SUMMARY/ABSTRACT
Project 1
Asthma afflicts over 7% of Americans and is the result of chronic inflammation of the airways leading to airway
remodeling and hyperresponsiveness that impedes air flow. Severe asthma is asthma that remains problematic
despite maximal intervention with conventional asthma therapies, and it accounts for the majority of the mortality
and cost of asthma. Dysfunction of airway β2-adrenergic receptor (β2AR) signaling contributes to severe asthma
pathogenesis, but the precise signaling mechanisms responsible are unclear. While activation of β2AR using
inhaled “β-agonist” drugs is a mainstay of acute asthma treatment, overactivation of β2AR is detrimental and can
be fatal. Airway β2ARs signal both through heterotrimeric G proteins and through G protein-coupled receptor
kinase (GRK)/β-arrestin pathways that also mediate receptor phosphorylation, desensitization, and
internalization. Through a long-standing collaboration, the Stamler and Gaston groups have found that airways
are regulated by nitric oxide (NO) through S-nitrosylation of thiols to form S-nitrosothiol (SNO), including on
cysteine residues in proteins, a post-translational modification that alters protein functions. In addition, SNO
forms on low molecular weight thiols, including glutathione to form SNO-glutathione (GSNO). We demonstrated
that inhaled GSNO elevates lung protein-SNO and is protective in asthma, identified the enzyme SNO-
glutathione reductase (GSNOR) that inactivates GSNO, and demonstrated that mice lacking GSNOR are
protected from developing asthma. Since the β2AR can activate NO synthase in the airways to generate NO,
there is a need to discover how this promotes endogenous SNO-mediated bronchoprotection. Our recent work
has shown that β2AR is S-nitrosylated after activation, and preventing SNO-β2AR with a point mutation augments
β2AR signaling. Importantly, mice bearing β2AR with a knock-in of this mutation are protected from developing
asthma. We have previously shown that β2AR regulators GRK2 and β-arrestin2 are S-nitrosylated to inhibit their
activity to desensitize the β2AR, and mice bearing GRK2-C340S and β-arrestin2-C253S knock-in exhibit heighted
β2AR activity and worsened injury in cardiac models. We have begun to test the efficacy of inhaled GSNO to
affect bronchorelaxation and improved lung function in patients, and these data and clinical samples uniquely
position us to examine the role of S-nitrosylation in regulating the β2AR pathway from bench to bedside. The
Central Hypothesis of Project 1 is that the β2AR signaling system is a key target and mediator of SNO-GSNO-
GSNOR protective effects in the airways in severe asthma. Our studies will define the role of S-nitrosylation of
specific β2AR signaling pathway components in a murine model of asthma, delineate the roles of inhaled GSNO
and of GSNO dinitrosylases on β2AR signaling components in murine models of asthma and in human lung
primary cells, and demonstrate that inhaled GSNO improves both airway flow and β2-agonist responsiveness in
severe asthma. This work complements the clinical aims in Projects 2 and 3 by providing a mechanistic link
between NO/GSNO/GSNOR actions and the regulation of β2AR signaling in severe asthma.
项目总结/摘要
项目1
哮喘折磨着超过7%的美国人,是气道慢性炎症导致气道炎症的结果。
重塑和高反应性,阻碍空气流动。严重哮喘是哮喘仍然存在问题
尽管常规哮喘治疗进行了最大限度的干预,但它仍占大多数死亡率,
哮喘的成本。气道β2-肾上腺素能受体(β 2-adrenergic receptor,β2AR)信号转导功能障碍与严重哮喘的关系
发病机制,但确切的信号机制尚不清楚。当β 2 AR被激活时,
吸入性“β-激动剂”药物是急性哮喘治疗的主要手段,β2AR的过度激活是有害的,
是致命的。气道β 2AR通过异源三聚体G蛋白和G蛋白偶联受体信号传导
激酶(GRK)/β-抑制蛋白途径,也介导受体磷酸化,脱敏,
内化通过长期合作,Stamler和Gaston团队发现,
通过硫醇的S-亚硝基化形成S-亚硝基硫醇(SNO),由一氧化氮(NO)调节,包括
蛋白质中的半胱氨酸残基,一种改变蛋白质功能的翻译后修饰。此外,SNO
在低分子量硫醇上形成,包括谷胱甘肽以形成SNO-谷胱甘肽(GSNO)。我们证明
吸入GSNO可以提高肺蛋白-SNO,对哮喘有保护作用,
谷胱甘肽还原酶(GSNOR)使GSNO失活,并证明缺乏GSNOR的小鼠
防止哮喘的发生。由于β2AR可以激活气道中的NO合酶产生NO,
需要发现其如何促进内源性SNO介导的支气管保护作用。我们最近的工作
已经表明β2AR在激活后被S-亚硝基化,用点突变阻止SNO-β2AR增加
β2AR信号传导。重要的是,携带β2AR并敲入该突变的小鼠可以避免发展成
哮喘我们先前已经证明β2AR调节剂GRK 2和β-arrestin 2被S-亚硝基化以抑制它们的表达。
GRK 2-C340 S和β-arrestin 2-C253 S基因敲入的小鼠表现出更高的β 2 AR脱敏活性,
心脏模型中β 2 AR活性和加重的损伤。我们已经开始测试吸入GSNO的功效,
影响患者的支气管舒张和改善肺功能,这些数据和临床样本
使我们能够从实验室到床旁检查S-亚硝基化在调节β2AR通路中的作用。的
项目1的中心假设是β2AR信号系统是SNO-GSNO-1的关键靶点和介导者。
GSNOR在严重哮喘气道中的保护作用。我们的研究将确定S-亚硝基化的作用,
哮喘小鼠模型中特异性β2AR信号通路成分,描述吸入GSNO的作用
在哮喘小鼠模型和人肺中GSNO二亚硝基化酶对β 2 AR信号成分的影响
原代细胞,并证明吸入GSNO改善气道流量和β2-激动剂反应性,
严重哮喘这项工作通过提供一种机械联系来补充项目2和3中的临床目标
NO/GSNO/GSNOR作用与β 2 AR信号调节之间的关系
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN S. STAMLER其他文献
JONATHAN S. STAMLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN S. STAMLER', 18)}}的其他基金
Gut Microbe-Derived Nitric Oxide As A Signal To Host: Role In Normal Physiology And In Disease
肠道微生物衍生的一氧化氮作为宿主信号:在正常生理和疾病中的作用
- 批准号:
10184663 - 财政年份:2021
- 资助金额:
$ 40.25万 - 项目类别:
Gut Microbe-Derived Nitric Oxide As A Signal To Host: Role In Normal Physiology And In Disease
肠道微生物衍生的一氧化氮作为宿主信号:在正常生理和疾病中的作用
- 批准号:
10576352 - 财政年份:2021
- 资助金额:
$ 40.25万 - 项目类别:
Gut Microbe-Derived Nitric Oxide As A Signal To Host: Role In Normal Physiology And In Disease
肠道微生物衍生的一氧化氮作为宿主信号:在正常生理和疾病中的作用
- 批准号:
10357961 - 财政年份:2021
- 资助金额:
$ 40.25万 - 项目类别:
Novel Regulation of Renal Function by S-Nitrosylation
S-亚硝基化对肾功能的新调节
- 批准号:
9792377 - 财政年份:2018
- 资助金额:
$ 40.25万 - 项目类别:
Novel Regulation of Renal Function by S-Nitrosylation
S-亚硝基化对肾功能的新调节
- 批准号:
10453693 - 财政年份:2018
- 资助金额:
$ 40.25万 - 项目类别:
Novel Regulation of Renal Function by S-Nitrosylation
S-亚硝基化对肾功能的新调节
- 批准号:
10223283 - 财政年份:2018
- 资助金额:
$ 40.25万 - 项目类别:
Restoration and Function of S-Nitrosothiol in Stored Blood
储存血液中S-亚硝基硫醇的恢复和作用
- 批准号:
10586343 - 财政年份:2016
- 资助金额:
$ 40.25万 - 项目类别:
Restoration and Function of S-Nitrosothiol in Stored Blood
储存血液中S-亚硝基硫醇的恢复和作用
- 批准号:
9174571 - 财政年份:2016
- 资助金额:
$ 40.25万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 40.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 40.25万 - 项目类别:
Operating Grants