Towards a computationally precise characterization of the human ventral visual pathway
人类腹侧视觉通路的计算精确表征
基本信息
- 批准号:10460457
- 负责人:
- 金额:$ 11.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimalsAreaBehaviorBrainBrain InjuriesBrain regionCategoriesCognitionComputer ModelsComputing MethodologiesDataData AnalysesDatabasesDevelopmentDiseaseEncapsulatedEvolutionEyeFaceFunctional Magnetic Resonance ImagingGoalsHumanImageImpairmentIndividualLeadLocationMentorsMethodsModelingMonkeysNetwork-basedNeurosciencesPatternPerceptionPerformancePhasePopulationPositioning AttributeReadingRecoveryResearchResolutionRestSeriesSocial FunctioningStimulusSupervisionSystemTestingTextVisionVisualVisual CortexVisual PathwaysVisual PerceptionWorkanalytical methodbasecognitive abilitycohortdata qualitydeep neural networkdesignexperimental studyextrastriatefusiform face areainsightinterestneuroimagingneuroprosthesisneurosurgeryobject recognitionpublic health relevancerelating to nervous systemresponsescreeningtheoriesultra high resolutionvision developmentvisual informationvisual processingvisual stimulus
项目摘要
Project Summary/Abstract: Humans are extraordinarily visual animals, allocating a third of their cortex just to
seeing what is in front of them. Visual recognition is supported by a series of hierarchically organized brain
regions known collectively as the ventral visual cortex (VVC). Despite extensive research, we still lack a
computationally precise understanding of how visual information is represented and transformed over stages of
the human VVC. A key barrier has been the limitations of methods like functional MRI (fMRI) which make it
difficult to test a large number of experimental stimuli. The research in this proposal will overcome this barrier by
collecting fMRI responses to hundreds of stimuli, and analyzing these data using deep neural network based
computational models and human interpretable algorithms such as image-synthesis and saliency mapping. In
Aim 1 (K99 phase), I will focus on the category-selective regions of the VVC, that respond preferentially to
images of faces (fusiform face area), scenes (parahippocampal place area), and bodies (extrastriate body area).
I will develop and use new computational methods together with closed-loop experiments to address open
questions such as: Is the hypothesized selectivity for these regions even correct? What is represented in the
intermediate stages of processing? Are there functionally distinct regions within the category-selective regions?
In Aim 2 (R00 phase), I will venture into the ~65% of VVC that lies outside the category-selective regions. I will
develop and apply new data-driven clustering to divide these regions into their native components, and
characterize them individually. Together, this endeavor will reveal the computational and neural basis of visual
recognition in humans with an unprecedented precision. My background in experimental and analytical methods
in monkey and human vision puts me in a unique position to accomplish this proposal which requires a seamless
integration between neuroimaging experiments and state-of-the-art computational modeling. The proposed work
will be initiated in the lab of Prof. Nancy Kanwisher (mentor). During the K99 phase, I will continue to be mentored
by Prof. Kanwisher, and will also advance my expertise with computational modeling under the supervision of
Dr. Jim DiCarlo (co-mentor), and ultra-high-resolution 7T neuroimaging with Dr. Jon Polimeni (collaborator). This
proposed plan will significantly augment my theoretical understanding and experimental abilities, and put me on
a path to independence.
Please try later.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
N Apurva Ratan Murty其他文献
N Apurva Ratan Murty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('N Apurva Ratan Murty', 18)}}的其他基金
Towards a computationally precise characterization of the human ventral visual pathway
人类腹侧视觉通路的计算精确表征
- 批准号:
10191834 - 财政年份:2021
- 资助金额:
$ 11.09万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 11.09万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 11.09万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 11.09万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 11.09万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 11.09万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 11.09万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 11.09万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 11.09万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 11.09万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 11.09万 - 项目类别:
Discovery Projects














{{item.name}}会员




