Enabling comprehensive diagnosis of sub-acute infection in chronic respiratory disease via high sensitivity next generation sequencing
通过高灵敏度下一代测序实现慢性呼吸道疾病亚急性感染的全面诊断
基本信息
- 批准号:10460284
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-17 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmsAsthmaAutomobile DrivingBiological AssayCLIA certifiedChronic Obstructive Pulmonary DiseaseChronic lung diseaseClinicalClinical ResearchCollaborationsColoradoComputer SystemsComputer softwareComputerized Medical RecordDataDetectionDevelopmentDiagnosisDiagnosticDiagnostic testsDiseaseFutureGoalsGoldHealthHealthcare SystemsHospitalizationIndividualInfectionInformation SystemsInfrastructureInstitutionKnowledgeLaboratoriesLungLung infectionsMedical Care CostsMetagenomicsMethodologyMethodsMicrobeMicrobiologyMolecularOnline SystemsOutcomePathologyPatientsPharmaceutical PreparationsPhasePhysiciansPopulationPrognosisQuality of lifeReportingResearchResearch ActivityRespiratory Tract InfectionsRiskSamplingSecureSensitivity and SpecificitySeriesSmall Business Innovation Research GrantSourceSymptomsSystemSystems IntegrationTechnologyTest ResultTestingTimeTreatment EffectivenessValidationViralVisualizationWritingacute infectionbasecare costschronic respiratory diseaseclinical databaseclinically relevantcloud basedcostdata integrationdesigndiagnostic assaydiagnostic tooldiagnostic valuedisease phenotypedisorder controlexperiencehealth care service organizationimprovedinsightlearning algorithmmetagenomic sequencingmicrobialmolecular sequence databasenext generation sequencingnovelnovel diagnosticspathogenpathogenic microbepersonalized medicinephase 1 studyproductivity lossprovider adoptionrelational databaseresearch clinical testingrespiratory pathogenscale upsoftware systemsstatistical learningtargeted sequencingtechnological innovationtooltreatment strategyweb portal
项目摘要
ABSTRACT
Sub-acute lung infections are increasingly recognized as drivers of poor symptom control among a subset of
individuals with chronic lung disease, estimated to be more than 2 million in the US for Asthma and COPD
patients. When these sub-acute infections are diagnosed and treated appropriately, chronic lung disease
patients can convert from moderate/severe to a milder disease phenotype, requiring lower medication to achieve
better health at a significantly lower cost. Current gold-standard diagnostics for sub-acute infection rely on
decades-old technology that can take weeks to complete, have limited sensitivity, and are limited in the type and
number of microbes that can be screened by a single test. Thus, a critical gap exists due to the inability of current
diagnostics to comprehensively and accurately detect microbial pathogens in low-burden clinical samples, which
is a significant barrier to improved clinical outcomes in chronic lung disease. We have thus developed a
comprehensive next generation sequencing (NGS) panel for detection and identification of microbes. Our Phase
I studies have demonstrated the feasibility of our diagnostic tool for application to subclinical respiratory
infections and its superiority to both microbiological and molecular approaches to diagnosis. Our NGS
diagnostics (Dx) panel is a significant technological innovation over current methodology; the Dx panel utilizes
samples directly from the patient (rather than relying on cultures), provides greater sensitivity than qPCR or
meta-genomic sequencing approaches and screens for the presence of tens of thousands other microbes in a
single assay. These features are possible due to our Dx panel design in addition to proprietary laboratory and
analysis workflows. The long-term goal of this project is to provide novel clinical tools for the detection of low-
burden microbial infections driving disease pathology, symptomology, and exacerbations in chronic lung disease
populations. In this Phase II, we will develop a data integration system to 1) deploy our diagnostic test in
healthcare organizations to drive physician adoption, 2) build data and apply algorithms necessary to expand
the impact and value-based reimbursement of our assay. Our Aims are to 1) develop a cloud-based commercial
software system for data receipt, storage, analysis and clinical reporting at scale, 2) integrate our software
system into the clinical workflow at our clinical partners, and 3) develop a web-based visualization portal for test
results and build the infrastructure for use of advanced statistical learning algorithms. This integrated system will
drive the development and application of personalized medicine approaches for diagnosis and treatment
guidance currently missing in chronic lung disease. The total market for this diagnostic is the set of chronic lung
disease patients with uncontrolled symptoms who could be screened for sub-acute infections. Our competitive
advantages include improved sensitivity, comprehensive microbe detection, streamlined analysis, and treatment
effectiveness insights within a single assay.
摘要
亚急性肺部感染越来越多地被认为是一个子集中症状控制不良的驱动因素,
患有慢性肺病的人,估计在美国有超过200万人患有哮喘和COPD
患者当这些亚急性感染得到诊断和适当治疗时,
患者可以从中度/重度疾病表型转化为较轻的疾病表型,
以更低的成本获得更好的健康目前亚急性感染的黄金标准诊断依赖于
几十年前的技术,可能需要数周才能完成,灵敏度有限,类型有限,
可以通过单一测试筛选的微生物数量。因此,由于电流的不可能,
诊断,以全面准确地检测低负荷临床样本中的微生物病原体,
是改善慢性肺部疾病临床结局的重要障碍。因此,我们开发了一个
用于检测和鉴定微生物的全面的下一代测序(NGS)板。我们的相位
I研究已经证明了我们的诊断工具应用于亚临床呼吸系统疾病的可行性。
感染和它的优越性,微生物和分子诊断方法。我们的NGS
诊断(Dx)面板是对当前方法的重大技术创新; Dx面板利用
直接来自患者的样本(而不是依赖于培养物),提供比qPCR或
元基因组测序方法和屏幕上的存在数以万计的其他微生物在一个
单次测定。由于我们的Dx面板设计以及专有实验室和
分析工作流。该项目的长期目标是为检测低血糖提供新的临床工具。
微生物感染加重慢性肺病的疾病病理学、病理学和加重
人口。在第二阶段,我们将开发一个数据集成系统,以1)将我们的诊断测试部署在
医疗保健组织推动医生采用,2)构建数据并应用必要的算法,
我们分析的影响和基于价值的补偿。我们的目标是1)开发基于云的商业
用于大规模数据接收、存储、分析和临床报告的软件系统,2)集成我们的软件
系统纳入临床工作流程,在我们的临床合作伙伴,和3)开发一个基于Web的可视化门户网站,用于测试
结果,并建立使用先进的统计学习算法的基础设施。该综合系统将
推动个性化诊疗方法的开发和应用
目前缺乏对慢性肺病的指导。这种诊断的总市场是一套慢性肺
可以筛查亚急性感染的症状不受控制的疾病患者。我们的竞争
其优点包括提高灵敏度、全面的微生物检测、简化的分析和治疗
在一个单一的分析有效性的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roland Marcus其他文献
Roland Marcus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roland Marcus', 18)}}的其他基金
Enabling comprehensive diagnosis of sub-acute infection in chronic respiratory disease via high sensitivity next generation sequencing
通过高灵敏度下一代测序实现慢性呼吸道疾病亚急性感染的全面诊断
- 批准号:
10325843 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant














{{item.name}}会员




