Enabling comprehensive diagnosis of sub-acute infection in chronic respiratory disease via high sensitivity next generation sequencing
通过高灵敏度下一代测序实现慢性呼吸道疾病亚急性感染的全面诊断
基本信息
- 批准号:10325843
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-17 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmsAsthmaAutomobile DrivingBiological AssayCLIA certifiedChronicChronic Obstructive Airway DiseaseChronic lung diseaseClinicalClinical ResearchCollaborationsColoradoComputer SystemsComputer softwareComputerized Medical RecordDataDetectionDevelopmentDiagnosisDiagnosticDiagnostic testsDiseaseFutureGoalsGoldHealthHealthcare SystemsHospitalizationIndividualInfectionInformation SystemsInfrastructureInstitutionKnowledgeLaboratoriesLungLung diseasesLung infectionsMedical Care CostsMetagenomicsMethodologyMethodsMicrobeMicrobiologyMolecularOnline SystemsOutcomePathologyPatientsPharmaceutical PreparationsPhasePhysiciansPopulationPrognosisQuality of lifeReportingResearchResearch ActivityRespiratory Tract InfectionsRiskSamplingSecureSensitivity and SpecificitySeriesSmall Business Innovation Research GrantSourceSymptomsSystemSystems IntegrationTechnologyTest ResultTestingTimeTreatment EffectivenessValidationViralVisualizationWritingacute infectionbasecare costsclinical databaseclinically relevantcloud basedcostdata integrationdesigndiagnostic assaydisease phenotypedisorder controlexperiencehealth care service organizationimprovedinsightlearning algorithmmetagenomic sequencingmicrobialmolecular sequence databasenext generation sequencingnovelnovel diagnosticspathogenpathogenic microbepersonalized medicinephase 1 studyproductivity lossprovider adoptionrelational databaseresearch clinical testingrespiratory pathogenscale upsoftware systemsstatistical learningtargeted sequencingtechnological innovationtooltreatment strategyweb portal
项目摘要
ABSTRACT
Sub-acute lung infections are increasingly recognized as drivers of poor symptom control among a subset of
individuals with chronic lung disease, estimated to be more than 2 million in the US for Asthma and COPD
patients. When these sub-acute infections are diagnosed and treated appropriately, chronic lung disease
patients can convert from moderate/severe to a milder disease phenotype, requiring lower medication to achieve
better health at a significantly lower cost. Current gold-standard diagnostics for sub-acute infection rely on
decades-old technology that can take weeks to complete, have limited sensitivity, and are limited in the type and
number of microbes that can be screened by a single test. Thus, a critical gap exists due to the inability of current
diagnostics to comprehensively and accurately detect microbial pathogens in low-burden clinical samples, which
is a significant barrier to improved clinical outcomes in chronic lung disease. We have thus developed a
comprehensive next generation sequencing (NGS) panel for detection and identification of microbes. Our Phase
I studies have demonstrated the feasibility of our diagnostic tool for application to subclinical respiratory
infections and its superiority to both microbiological and molecular approaches to diagnosis. Our NGS
diagnostics (Dx) panel is a significant technological innovation over current methodology; the Dx panel utilizes
samples directly from the patient (rather than relying on cultures), provides greater sensitivity than qPCR or
meta-genomic sequencing approaches and screens for the presence of tens of thousands other microbes in a
single assay. These features are possible due to our Dx panel design in addition to proprietary laboratory and
analysis workflows. The long-term goal of this project is to provide novel clinical tools for the detection of low-
burden microbial infections driving disease pathology, symptomology, and exacerbations in chronic lung disease
populations. In this Phase II, we will develop a data integration system to 1) deploy our diagnostic test in
healthcare organizations to drive physician adoption, 2) build data and apply algorithms necessary to expand
the impact and value-based reimbursement of our assay. Our Aims are to 1) develop a cloud-based commercial
software system for data receipt, storage, analysis and clinical reporting at scale, 2) integrate our software
system into the clinical workflow at our clinical partners, and 3) develop a web-based visualization portal for test
results and build the infrastructure for use of advanced statistical learning algorithms. This integrated system will
drive the development and application of personalized medicine approaches for diagnosis and treatment
guidance currently missing in chronic lung disease. The total market for this diagnostic is the set of chronic lung
disease patients with uncontrolled symptoms who could be screened for sub-acute infections. Our competitive
advantages include improved sensitivity, comprehensive microbe detection, streamlined analysis, and treatment
effectiveness insights within a single assay.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roland Marcus其他文献
Roland Marcus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roland Marcus', 18)}}的其他基金
Enabling comprehensive diagnosis of sub-acute infection in chronic respiratory disease via high sensitivity next generation sequencing
通过高灵敏度下一代测序实现慢性呼吸道疾病亚急性感染的全面诊断
- 批准号:
10460284 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Research Grant