Demonstrating the feasibility of applying machine learning models to railway condition data: Engine condition monitoring and failure prediction
展示将机器学习模型应用于铁路状况数据的可行性:发动机状况监测和故障预测
基本信息
- 批准号:10080979
- 负责人:
- 金额:$ 6.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rail industry is undergoing a digital revolution, which has created opportunities to transform the way we are able to interact with older "mid-life" trains. Historically it has been technically and economically challenging to harness data from older assets - which is invaluable for understanding asset condition, optimising maintenance and predicting emerging failures.Whilst digital enhancements in recent years have rapidly accelerated the ability to extract valuable data from these trains, this presents a new challenge to make sense of the mass of data produced from many disparate systems.This project will combine asset knowledge, operational expertise, Data Science capability and the application of Machine Learning tools borne from the Aerospace sector to test the feasibility of using AI and Machine learning tools to extract insights from large amounts of near real-time data from train engines.Chrome Angel Solutions and Amygda Labs are working in collaboration with Angel Trains and Grand Central Trains to explore the feasibility of applying Amygda's innovative machine learning tools to derive insights from engine data. Amygda Labs' unique approach to building ML models using unsupervised learning techniques enables faster of delivery of insights when compared to established approaches, typically reducing the model build time from months to days without relying on domain knowledge, which can be costly and time-consuming.This feasibility study will test whether AI and Machine Learning tools can derive faster and deeper insights compared to current Data Science methods, by detecting relationships in the data and enabling faster and more proactive decision making, leading to better planning and improved asset availability.
铁路行业正在进行数字革命,这创造了机会改变我们能够与较旧的“中年”火车互动的方式。从历史上看,它在技术和经济上在利用较旧资产的数据上一直充满挑战 - 这对于了解资产状况,优化维护,预测新出现的失败是无价的。近年来数字增强功能迅速加速了从这些火车中提取有价值数据的能力,从这些火车中提取有价值的数据,这会带来一项新的挑战,从而使自己的数据构成了多个数据的质量,并将其构成数据范围的范围,并构成了许多差异,并将其组合到许多范围内,并将其组合成众多的范围。机器学习工具的应用从航空航天部门承担,以测试使用AI和机器学习工具从火车引擎中提取大量近实时数据的见解的可行性。ChromeAngel Solutions和Amygda Labs正在与Angel Trains和Grand Central Trains合作进行合作,以探索Amygda Innov Annerove Innerogative Machine Woods的可行性,以启用amyygda的工具,以启用amyygda的工具来启用启发工具。 Amygda Labs' unique approach to building ML models using unsupervised learning techniques enables faster of delivery of insights when compared to established approaches, typically reducing the model build time from months to days without relying on domain knowledge, which can be costly and time-consuming.This feasibility study will test whether AI and Machine Learning tools can derive faster and deeper insights compared to current Data Science methods, by detecting relationships in the data并实现更快,更积极的决策,从而更好地计划和改善资产可用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
相似国自然基金
我国养老金缺口化解的新方案:公债融资的可行性分析及最优规模确定
- 批准号:72371078
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
基于MIXED Transformer和DS-TransUNet构建嵌入椎旁肌退变量化模块的体内校准骨密度模型检测骨质疏松的可行性研究。
- 批准号:82302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向巨胞饮治疗β-catenin活化突变肝癌的可行性及机制研究
- 批准号:82303624
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LGG促进酮体生成抵抗动脉粥样硬化的机制及其作为动脉粥样硬化风险评估标志物的可行性研究
- 批准号:82302591
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热休克蛋白70抑制剂增强三阴性乳腺癌光热免疫治疗联合化疗敏感性的可行性及机制研究
- 批准号:82303815
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimizing adherence to lung cancer screening: Applying theory and implementation science to participant engagement
优化肺癌筛查的依从性:将理论和实施科学应用于参与者的参与
- 批准号:
10470376 - 财政年份:2021
- 资助金额:
$ 6.37万 - 项目类别:
Optimizing adherence to lung cancer screening: Applying theory and implementation science to participant engagement
优化肺癌筛查的依从性:将理论和实施科学应用于参与者的参与
- 批准号:
10305431 - 财政年份:2021
- 资助金额:
$ 6.37万 - 项目类别:
Applying Positive Deviance Methods to Harness Optimal Practices for Effective Pain Management in Community Living Centers
应用正偏差方法来利用最佳实践,在社区生活中心进行有效的疼痛管理
- 批准号:
10443564 - 财政年份:2021
- 资助金额:
$ 6.37万 - 项目类别:
Optimizing adherence to lung cancer screening: Applying theory and implementation science to participant engagement
优化肺癌筛查的依从性:将理论和实施科学应用于参与者的参与
- 批准号:
10818665 - 财政年份:2021
- 资助金额:
$ 6.37万 - 项目类别:
Applying Positive Deviance Methods to Harness Optimal Practices for Effective Pain Management in Community Living Centers
应用正偏差方法来利用最佳实践,在社区生活中心进行有效的疼痛管理
- 批准号:
10668268 - 财政年份:2021
- 资助金额:
$ 6.37万 - 项目类别: