Applying Positive Deviance Methods to Harness Optimal Practices for Effective Pain Management in Community Living Centers

应用正偏差方法来利用最佳实践,在社区生活中心进行有效的疼痛管理

基本信息

项目摘要

Background: Unrelieved pain is highly prevalent and devastating for Veterans in VA’s 134 Community Living Centers (CLCs). Imminent removal of pain as one of the CLC quality measures offers an opportunity, per VA’s Office of Geriatrics and Extended Care (GEC), to develop new, risk-adjusted measures that more accurately characterize CLC pain management. These measures can identify CLCs successful at pain management while minimizing biased underestimates for CLCs with the sickest residents. Then, by diving deeply into structures and processes of high performers, we can learn how to intervene. My background in gerontology, quantitative methods, and implementation science partially prepares me for this work. But I need additional training in risk adjustment, qualitative research, cutting-edge analytic methods, and intervention study designs for the study and my health services research career to succeed. Specific Aims: The proposed CDA simultaneously fills the considerable gaps in my background and provides VA with rigorous, actionable research on which to ground future quality improvement efforts. A social- ecological model frames the work. GEC commits to serving as an invested partner. I have 3 aims, which I will achieve with my mentors and training. 1. Evaluate how risk adjustment changes judgements of CLC pain management performance. 2. Use mixed methods to perform in-depth studies of CLCs with high outlying performance. 3. Adapt an existing, evidence-based intervention comprising lessons learned from “positive deviants.” Methods: Aim 1: Using VA administrative data of CLC residents, I will (1) calculate unadjusted pain measures, (2) apply risk adjustment, (3) assess the measures’ reliability and validity, and (4) identify high and low outlying performance on pain management. Aim 2: I will use quantitative (survey) and qualitative data from staff and residents at 5 top-performing CLCs, contrasted with qualitative data from 5 low-performing CLCs, to develop hypotheses of contextual factors and pain management practices unique to positive deviants. I will test causal relationships using configurational comparative analytic methods. Aim 3: I will adapt an existing nursing home pain management intervention for use in VA CLCs, using empirical evidence from Aim 2 about necessary conditions for optimal pain management. A modified e-Delphi panel of CLC stakeholders and pain management experts will provide feedback on the intervention package’s design. I will use a developmental formative evaluation of qualitative data from staff at 1 low-performing CLC to assess the intervention’s feasibility and acceptability, in preparation for rigorous testing in future work. Expected Results and Next Steps: I will provide GEC with interim deliverables to enable assessment of CLC pain management quality, guide CLC policy, and support clinical practice in CLCs struggling with pain management. Knowledge from this CDA will lead me to develop studies to refine risk adjustment methods for quality measurement in other critical areas and to rigorously evaluate, using a hybrid type II design, clinical effectiveness and implementation of the intervention. Significance & Relevance to Veterans’ Health: Coming at a critical juncture in my VA research career, this timely study responds to the VA priority of Greater Choice for Veterans, ORD’s priority to increase substantial real-world impact of VA research, and HSR&D’s Long-term Care and Opioid/Pain priority domains. Although pain is highly prevalent and debilitating for the 42,000 vulnerable Veterans CLCs serve, almost nothing is systematically known about CLCs’ pain management quality. And current pain measures are about to disappear. This study seizes this opportunity, developing nuanced, VA-specific approaches that are custom- made to reflect the accurate state of CLC pain management and help improve VA long-term care.
背景:在退伍军人事务部的134个社区生活中,无法缓解的疼痛对退伍军人来说是非常普遍和毁灭性的

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrating CFIR-ERIC and e-Delphi Methods to Increase Telegeriatrics Uptake.
整合 CFIR-ERIC 和 e-Delphi 方法以提高远程老年医学的采用率。
  • DOI:
    10.1093/geront/gnac107
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kernan,LauraM;Dryden,EileenM;Nearing,Kathryn;Kennedy,MeaghanA;Hung,Will;Moo,Lauren;Pimentel,CamillaB
  • 通讯作者:
    Pimentel,CamillaB
Perceived benefits of geriatric specialty telemedicine among rural patients and caregivers.
  • DOI:
    10.1111/1475-6773.14055
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Dryden, Eileen M.;Kennedy, Meaghan A.;Conti, Jennifer;Boudreau, Jacqueline H.;Anwar, Chitra P.;Nearing, Kathryn;Pimentel, Camilla B.;Hung, William W.;Moo, Lauren R.
  • 通讯作者:
    Moo, Lauren R.
Response to Letter to the Editor: Account for Identity in URM Mentorship.
对致编辑的信的回复:URM 指导中的身份说明。
  • DOI:
    10.1007/s11606-021-07186-6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Quach,EmmaD;Pimentel,CamillaB;Hartmann,ChristineW
  • 通讯作者:
    Hartmann,ChristineW
The Development and Use of a New Visual Tool (REVISIT) to Support Participant Recall: Web-Based Interview Study Among Older Adults.
开发和使用新的视觉工具(REVISIT)来支持参与者回忆:基于网络的老年人访谈研究。
  • DOI:
    10.2196/52096
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Dryden,EileenM;Anwar,Chitra;Conti,Jennifer;Boudreau,JacquelineH;Kennedy,MeaghanA;Hung,WilliamW;Nearing,KathrynA;Pimentel,CamillaB;Moo,Lauren
  • 通讯作者:
    Moo,Lauren
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Camilla Benedicto Pimentel其他文献

Camilla Benedicto Pimentel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Camilla Benedicto Pimentel', 18)}}的其他基金

Applying Positive Deviance Methods to Harness Optimal Practices for Effective Pain Management in Community Living Centers
应用正偏差方法来利用最佳实践,在社区生活中心进行有效的疼痛管理
  • 批准号:
    10443564
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Applying Positive Deviance Methods to Harness Optimal Practices for Effective Pain Management in Community Living Centers
应用正偏差方法来利用最佳实践,在社区生活中心进行有效的疼痛管理
  • 批准号:
    10178377
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Healthcare providers and public reporting of Community Living Center (CLC) quality: Investigating responses and opportunities for intervention through the PROACTIVE mixed-methods study
医疗保健提供者和社区生活中心 (CLC) 质量的公开报告:通过前瞻性混合方法研究调查干预措施的反应和机会
  • 批准号:
    10186470
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
  • 批准号:
    2317873
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了