Encoding of probability distributions of 3D estimates in mind and brain
心智和大脑中 3D 估计概率分布的编码
基本信息
- 批准号:10463171
- 负责人:
- 金额:$ 23.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAgreementAnatomyBayesian AnalysisBayesian ModelingBayesian PredictionBehavioralBiologicalBrainCodeCollectionCuesDataDepth PerceptionDiagnosisDiscriminationFunctional Magnetic Resonance ImagingGoalsHealth ProfessionalHumanImage EnhancementIndividualInfluentialsInterdisciplinary StudyInvestigationJust-Noticeable DifferencesKnowledgeLaparoscopic Surgical ProceduresMeasuresMedical TechnologyMethodsMindModelingMotorNoiseOutcomePatternPerceptionPerformancePopulationProbabilityProceduresProcessPropertyPsychophysicsResearchResearch Project GrantsResearch ProposalsSensoryShort-Term MemorySourceStimulusTechniquesTestingThree-Dimensional ImagingUncertaintyVisionVisualVisual PerceptionVisual PsychophysicsVisual system structureWidthblood oxygen level dependentdesigninstrumentinterestmemory processmemory retentionmemory retrievalneuroimagingnovelrelating to nervous systemresponsestandard measurestemtheoriestime intervalvision sciencevisual processvisual processing
项目摘要
Project Summary
One of the most influential theories of biological vision considers visual perception as a process of Bayesian
inference. In order to make inferences about the external world a successful visual system must take into
account the uncertainty of neural computations. In the particular case of depth perception, the focus of this
project, Bayesian models postulate that uncertainty is explicitly represented as probability distributions defined
over possible 3D interpretations of a scene. Only this knowledge allows the integration of multiple sources of 3D
information to achieve Bayesian optimality. A large body of data compatible with this theory comes from studies
involving depth discrimination, where it is indeed found that variability in perceptual responses becomes smaller
as more depth cues are added to a stimulus. Here it is questioned whether this data is evidence that behavioral
variability stems from neural noise representing uncertainty of 3D estimates. Instead, an alternate theory is
proposed, which does not require this representation. Beyond being more parsimonious, this theory can also
predict the same findings that seem to confirm the Bayesian predictions.
This exploratory research proposal lays out two testable predictions of this new theory, termed Intrinsic
Constraint (IC), for which (1) the brain does not represent probability distributions over 3D properties and (2)
perceptual variability in depth discrimination tasks does not reflect uncertainty encoded in these probability
distributions. In contrast to the Bayesian account, the IC theory postulates that responses to different 3D stimuli
vary in magnitude instead of perceptual noise. In particular, stimuli that according to Bayesian models allegedly
have different reliabilities for the IC model elicit different perceptual gains. Combining cues increases the
perceptual gain and this factor, not higher precision, enhances performance in depth discriminations tasks. This
prediction gives the IC model the explanatory power necessary to support its viability as a theory of 3D
perception. Testing the validity of either theoretical account will be achieved through the synergetic collection of
behavioral and fMRI data. First, it will be determined whether the Just Noticeable Difference (JND) of a two-
interval depth discrimination task measures stimulus reliability or noise associated with memory retention.
According to this second interpretation, it is the perceptual gain that determines the changes in physical depth
required to overcome this task related noise, in agreement with the IC account. Second, an fMRI technique that
can estimate both the magnitude and noise of probability distributions encoded in neural population activity will
provide critical converging evidence of the existence (or absence) of neural encoding of 3D uncertainty. In
summary, this research project will bring together the two separate fields of research of visual perception and
visual short-term memory, with investigations leveraging behavioral and fMRI methods for addressing a
fundamental problem in vision science.
项目概要
最有影响力的生物视觉理论之一将视觉感知视为贝叶斯过程
推理。为了推断外部世界,一个成功的视觉系统必须考虑到
考虑神经计算的不确定性。在深度感知的特殊情况下,这个焦点
项目中,贝叶斯模型假设不确定性明确表示为定义的概率分布
场景的可能 3D 解释。只有这些知识才能集成多个 3D 源
信息来实现贝叶斯最优。与该理论相符的大量数据来自研究
涉及深度辨别,确实发现知觉反应的变异性变得更小
随着更多深度线索被添加到刺激中。这里有人质疑这些数据是否是行为的证据
变异性源于代表 3D 估计不确定性的神经噪声。相反,另一种理论是
提议,不需要这种表示。除了更加节俭之外,这个理论还可以
预测的结果似乎证实了贝叶斯预测。
这项探索性研究提案提出了这一新理论的两个可测试的预测,称为“内在”
约束 (IC),其中 (1) 大脑不代表 3D 属性上的概率分布,并且 (2)
深度辨别任务中的感知变化并不反映这些概率中编码的不确定性
分布。与贝叶斯理论相反,IC 理论假设对不同 3D 刺激的反应
幅度变化而不是感知噪声。特别是,根据贝叶斯模型据称
IC 模型具有不同的可靠性,会产生不同的感知增益。组合线索可增加
感知增益和这个因素(而不是更高的精度)提高了深度辨别任务的性能。这
预测为 IC 模型提供了必要的解释力,以支持其作为 3D 理论的可行性
洞察力。测试任一理论解释的有效性将通过协同收集来实现
行为和功能磁共振成像数据。首先,将确定两个变量的最小可觉差异 (JND) 是否为
间隔深度辨别任务测量与记忆保留相关的刺激可靠性或噪声。
根据第二种解释,感知增益决定了物理深度的变化
与 IC 帐户一致,需要克服与此任务相关的噪声。其次,功能磁共振成像技术
可以估计神经群体活动中编码的概率分布的大小和噪声
提供 3D 不确定性神经编码存在(或不存在)的关键聚合证据。在
总之,这个研究项目将汇集视觉感知和视觉感知两个独立的研究领域
视觉短期记忆,利用行为和功能磁共振成像方法的研究来解决
视觉科学的基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Badre其他文献
David Badre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Badre', 18)}}的其他基金
Encoding of probability distributions of 3D estimates in mind and brain
心智和大脑中 3D 估计概率分布的编码
- 批准号:
10707016 - 财政年份:2022
- 资助金额:
$ 23.93万 - 项目类别:
The organization of neural representations for flexible behavior in the human brain
人脑灵活行为的神经表征的组织
- 批准号:
10462719 - 财政年份:2021
- 资助金额:
$ 23.93万 - 项目类别:
The organization of neural representations for flexible behavior in the human brain
人脑灵活行为的神经表征的组织
- 批准号:
10664958 - 财政年份:2021
- 资助金额:
$ 23.93万 - 项目类别:
The organization of neural representations for flexible behavior in the human brain
人脑灵活行为的神经表征的组织
- 批准号:
10316728 - 财政年份:2021
- 资助金额:
$ 23.93万 - 项目类别:
Training Program for Interactionist Cognitive Neuroscience (ICoN)
互动认知神经科学培训计划 (ICoN)
- 批准号:
10624876 - 财政年份:2019
- 资助金额:
$ 23.93万 - 项目类别:
Training Program for Interactionist Cognitive Neuroscience (ICoN)
互动认知神经科学培训计划 (ICoN)
- 批准号:
10161832 - 财政年份:2019
- 资助金额:
$ 23.93万 - 项目类别:
Training Program for Interactionist Cognitive Neuroscience (ICoN)
互动认知神经科学培训计划 (ICoN)
- 批准号:
10404975 - 财政年份:2019
- 资助金额:
$ 23.93万 - 项目类别:
Training Program for Interactionist Cognitive Neuroscience (ICoN)
互动认知神经科学培训计划 (ICoN)
- 批准号:
9908177 - 财政年份:2019
- 资助金额:
$ 23.93万 - 项目类别:
Cognitive control and the functional organization of frontal cortex
认知控制和额叶皮层的功能组织
- 批准号:
8210960 - 财政年份:2010
- 资助金额:
$ 23.93万 - 项目类别:
Cognitive control and the functional organization of frontal cortex
认知控制和额叶皮层的功能组织
- 批准号:
7785651 - 财政年份:2010
- 资助金额:
$ 23.93万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.93万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.93万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.93万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.93万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.93万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.93万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.93万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.93万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.93万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.93万 - 项目类别:
Research Grant














{{item.name}}会员




