Illuminating the essential role of the outer membrane component and drug target, lipopolysaccharide
阐明外膜成分和药物靶点脂多糖的重要作用
基本信息
- 批准号:10463261
- 负责人:
- 金额:$ 3.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiAddressAnimalsAntibioticsAtomic Force MicroscopyBacteriaBiologyBypassCell SeparationCell SurvivalCell WallCell divisionCell physiologyCellsCellular MorphologyChargeClinicalColistinCollectionComplementCytologyDataDefectDivalent CationsDrug TargetingEscherichia coliFellowshipFilamentGeneticGram-Negative BacteriaGram-Negative Bacterial InfectionsGrantGrowthImmune TargetingImmune systemInfectionInnate Immune SystemLeadLipopolysaccharidesMediator of activation proteinMembraneMentorsMicroscopyModelingMorphologyMutationNatureOrganismOsmolar ConcentrationOsmotic ShocksPeptidoglycanPermeabilityPhenotypePhospholipidsPhysiologyProcessProtein BiochemistryResearch PersonnelResortRoleSignal TransductionSignaling MoleculeStructureSuggestionTestingTimeWorkcareercell envelopecell growthcolistin resistanceconditional mutantcrosslinkexperimental studygain of functiongenetic approachinsightinterestknock-downmutantpathogenpolyionpressureprofessorsingle cell analysisskillsstem
项目摘要
The gram-negative outer membrane (OM) is asymmetric, with phospholipids on the inner leaflet and
lipopolysaccharide (LPS) on the outer leaflet. A defining part of the gram-negative cell envelope, LPS is a
major signal for infection in animals and is a target of last resort antibiotics, such as colistin. Normally essential,
clinical use of colistin has selected for Acinetobacter baumannii strains that do not produce LPS. Although LPS
has been implicated in diverse functions, its precise role in gram-negative biology is unclear. Recent work in E.
coli suggests LPS is capable of contributing as much rigidity to the cell envelope as the cell wall, a function that
requires polyionic interactions between negative moieties on LPS and divalent cations. Analysis of conditional
E. coli mutants defective in LPS synthesis and transport revealed formation of filaments and cell chains,
suggesting an additional role for LPS in cell division and separation. The essentiality of LPS in either process is
unclear.
To evaluate the essential role(s) of LPS in gram-negative biology, I will leverage a set of E. coli mutants to
conditionally knockdown LPS synthesis and transport, manipulate LPS charge (and thereby its interactions
with divalent cations to provide rigidity), and produce a minimal LPS structure. Using this collection in Aim 1, I
will systematically characterize the effect(s) of LPS defects on cell growth and morphology to understand the
contribution of LPS to both phenomena. In Aim 2, I will test my hypothesis that providing cell envelope rigidity
is a primary, essential function of LPS. Aim 2.1 will evaluate the ability of hyperosmotic conditions (which
reduce the force exerted by turgor pressure on the cell envelope) to compensate for LPS defects. Because the
force of turgor pressure is spread between the cell wall and the OM, Aim 2.2 will test whether increasing rigidity
of the cell envelope via cell wall crosslinking can compensate for LPS defects. In Aim 3, I will identify the steps
in cell division and separation impacted by defects in LPS synthesis and transport, respectively. This effort will
illuminate the mechanistic basis of filamentation and chaining in LPS mutants. Examination of A. baumannii
LPS deletion mutants identified a correlation between division and cell survival. I am thus particularly interested
in testing whether enhancing division using complementary genetic strategies promotes growth of LPS
deficient E. coli. If enhancing cell envelope rigidity is an essential role of LPS, additional septa may offset
lethality associated with LPS defects through a positive impact on the structural integrity of the cell as a whole.
A major signaling molecule for the immune system and target for last resort antibiotics, a better understanding
of the essential role of LPS in gram-negative biology will provide insights into mitigation and treatment of gram-
negative pathogens. Through this F31 fellowship, I will develop expertise in microscopy, protein biochemistry,
and single cell analysis. Further, it will grant me the time and support necessary to hone my skills as a
scientific mentor and communicator to prepare me for a career as a professor and independent investigator.
革兰氏阴性外膜(OM)是不对称的,磷脂在内小叶和
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Adam Valdez其他文献
Ryan Adam Valdez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Adam Valdez', 18)}}的其他基金
Illuminating the essential role of the outer membrane component and drug target, lipopolysaccharide
阐明外膜成分和药物靶点脂多糖的重要作用
- 批准号:
10668249 - 财政年份:2022
- 资助金额:
$ 3.27万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 3.27万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 3.27万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 3.27万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 3.27万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 3.27万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 3.27万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 3.27万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 3.27万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 3.27万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 3.27万 - 项目类别:
Research Grant