Network-based algorithms for target identification and drug repositioning from genetic associations
基于网络的算法,用于根据遗传关联进行目标识别和药物重新定位
基本信息
- 批准号:10462769
- 负责人:
- 金额:$ 54.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcademiaAddressAffectAlgorithmic SoftwareAlgorithmsAmericanBioinformaticsBiologicalBiological AssayBiological ProductsCardiovascular systemCatalogsChromosome MappingChromosome StructuresComplexComputing MethodologiesDataDatabasesDiabetes MellitusDiagnosisDiseaseDrug IndustryDrug TargetingElectronic Health RecordFundingGenesGeneticGenetic Predisposition to DiseaseGenetic studyGenomeGenomicsGenotypeGoalsGrantHealth systemHumanHypertensionIndividualLeadLinkLow-Density LipoproteinsMeasurementMethodsMissionMolecularNational Human Genome Research InstituteNetwork-basedNoiseOutcomePathogenesisPathway AnalysisPathway interactionsPharmaceutical PreparationsPhenocopyPhenotypePlayPrecision Medicine InitiativeProteinsPublic HealthResearchResearch PersonnelRoleSpecificityStructureTestingTherapeuticTimeTissuesTranslatingUnited States National Institutes of HealthUntranslated RNAVariantWorkalgorithm developmentalternative treatmentbasebiobankcausal variantdata resourcedesigndiverse datadrug candidatedrug developmentdrug discoverydrug metabolismeffective therapyexome sequencingexperimental studygene networkgenetic associationgenetic variantgenome wide association studygenomic datahuman diseaseinnovationinsightnovel therapeuticsphenomephenotypic datapreventprimary outcometraittranslational impact
项目摘要
In the field of genetics, genome-wide association studies of common variants (GWAS) and exome sequencing-
based analyses are a common strategy to elucidate the relationship between genetic variants and a specific
phenotype. While these approaches have strengths, they also have significant limitations such as their inability
to identify complex biological interactions that lead to genetic predispositions, their inability to integrate distinct
but related phenotypes, and their inability to separate genetic variants effects by tissue. If a phenotype is
manifest only as a result of the complex interplay of multiple factors, it can be impossible to successfully isolate
individual parts by investigating genotype-phenotype associations for only one outcome trait or disease alone.
To affect a disease, drugs need to act on the right target and in the right tissue. Bioinformatics approaches that
integrate multiple key layers of information to reveal effective drugs will address a critical unmet need because
it is expected that a complex interplay of factors forms the basis for most human phenotypes and diseases.
The overall objective of this proposal is the development of algorithms that integrate gene and phenome-wide
association results with chromosome structure data and functional relationship networks to identify genes that
give rise to complex phenotypes and drugs that modify them. These algorithms will provide a new and unique
means to study the genetic etiology of complex traits and outcomes, increasing the interpretability of and
ultimately the insights generated from high throughput association testing. The proposal's rationale is that
robust tissue-specific methods will open the door for geneticists, researchers with biorepositories, and those
with access to other extensive phenotyping data to effectively reposition drugs and identify new targets.
Complementary algorithms to address distinct aspects of this challenge are proposed as specific aims: (AIM 1)
Development of algorithms that integrate exome sequencing results with biological networks to identify genes
and pathways associated with phenotypes in specific tissues; (AIM 2) Development of algorithms that integrate
3D genome structure with robust associations via biological networks to identify genes underlying phenotypes
in specific tissues; (AIM 3) Development of algorithms that identify drugs that specifically alter regions of gene-
gene networks associated with a complex phenotype. Methods will be applied to phenome-wide analysis of the
Geisinger Health System MyCode® biorepository and a subset of candidates will be validated via molecular
assays.
The outcomes of this grant, namely algorithms for tissue-specific network analysis of genes and drugs, are
expected to generate positive translational impact because such algorithms enable researchers to translate
existing data resources into causal genes and effective drugs.
在遗传学领域,常见变异的全基因组关联研究(GWAS)和外显子组测序
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Changing word meanings in biomedical literature reveal pandemics and new technologies.
- DOI:10.1186/s13040-023-00332-2
- 发表时间:2023-05-05
- 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
Parameterized algorithms for identifying gene co-expression modules via weighted clique decomposition.
通过加权团分解识别基因共表达模块的参数化算法。
- DOI:10.1137/1.9781611976830.11
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Cooley M;Greene CS;Issac D;Pividori M;Sullivan BD
- 通讯作者:Sullivan BD
Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment.
- DOI:10.1128/msystems.00122-21
- 发表时间:2021-05-04
- 期刊:
- 影响因子:6.4
- 作者:Lordan R;Rando HM;COVID-19 Review Consortium;Greene CS
- 通讯作者:Greene CS
wenda_gpu: fast domain adaptation for genomic data.
- DOI:10.1093/bioinformatics/btac663
- 发表时间:2022-11-15
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Optimizer's dilemma: optimization strongly influences model selection in transcriptomic prediction.
- DOI:10.1093/bioadv/vbae004
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Casey S Greene其他文献
Casey S Greene的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Casey S Greene', 18)}}的其他基金
Network-based algorithms for target identification and drug repositioning from genetic associations
基于网络的算法,用于根据遗传关联进行目标识别和药物重新定位
- 批准号:
10447417 - 财政年份:2021
- 资助金额:
$ 54.94万 - 项目类别:
Network-based algorithms for target identification and drug repositioning from genetic associations
基于网络的算法,用于根据遗传关联进行目标识别和药物重新定位
- 批准号:
10427765 - 财政年份:2021
- 资助金额:
$ 54.94万 - 项目类别:
Network-based algorithms for target identification and drug repositioning from genetic associations
基于网络的算法,用于根据遗传关联进行目标识别和药物重新定位
- 批准号:
9920754 - 财政年份:2018
- 资助金额:
$ 54.94万 - 项目类别:
相似海外基金
Conference: Rethinking how language background is described in academia and beyond
会议:重新思考学术界及其他领域如何描述语言背景
- 批准号:
2335912 - 财政年份:2024
- 资助金额:
$ 54.94万 - 项目类别:
Standard Grant
ADVANCE Catalyst: Virtual Observatory of Culture for Equity in Academia at the University of Puerto Rico Rio Piedras (VoCEA)
ADVANCE Catalyst:波多黎各 Rio Piedras 大学学术界平等文化虚拟观察站 (VoCEA)
- 批准号:
2214418 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
Standard Grant
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
- 批准号:
23K02551 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating Research Advancement for Investigators Underrepresented in Academia
加速学术界代表性不足的研究人员的研究进展
- 批准号:
10746315 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
Planning: HBCU-UP: Strengthening Data Science Research Capacity and Education Programs through Academia-Industry Partnership
规划:HBCU-UP:通过学术界与工业界合作加强数据科学研究能力和教育计划
- 批准号:
2332161 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
Standard Grant
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
- 批准号:
10813323 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
- 批准号:
10087488 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
EU-Funded
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
- 批准号:
10102850 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
EU-Funded
Exploring the overall picture of industry-academia-government collaboration: A spectrum of knowledge transfer through formal and informal channels
探索产学官合作的整体图景:通过正式和非正式渠道进行的一系列知识转移
- 批准号:
22K01692 - 财政年份:2022
- 资助金额:
$ 54.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fostering Ethical Neurotechnology Academia-Industry Partnerships: A Stakeholder Engagement and Toolkit Development Project
促进道德神经技术学术界与工业界的伙伴关系:利益相关者参与和工具包开发项目
- 批准号:
10655632 - 财政年份:2022
- 资助金额:
$ 54.94万 - 项目类别:














{{item.name}}会员




