A microphysiological engineered 3D system to the rescue of ovarian follicles

用于拯救卵泡的微生理工程 3D 系统

基本信息

  • 批准号:
    10462607
  • 负责人:
  • 金额:
    $ 35.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary Ovarian follicles are the functional multicellular units of the ovary responsible for a woman’s fertility and ovarian endocrine function. Currently, young women and prepubertal girls diagnosed with cancer and facing ovo-toxic treatments have limited options to preserve their fertility, with cryopreservation of ovarian tissue prior to chemotherapy being the most promising route. Only primordial and early-stage primary follicles survive cryopreservation. To grow and mature, follicles have to be isolated and cultured in groups, because they die if cultured individually. Culture of isolated early follicles as groups has limited translational potential, because of different developmental stages and varying quality of follicles in the cohort, thus emphasizing the need to develop approaches to successfully culture early follicles individually. The low success rates of in vitro follicle development are attributed to the complex and poorly understood paracrine and autocrine signaling between the cells in a follicle, neighboring follicles and their microenvironment. Our overall research objectives are: (a) to identify key factors essential for activation and growth of early stage follicles in vitro, (b) to establish networks and functional relationships between secreted factors, downstream receptors and transcription factors, and (c) to create a standardized in vitro culture system that promotes growth and maturation of early follicles individually. The novelty and the significance of the proposed research are in the discovery of key factors that control and direct the earliest stages of ovarian follicle development. Application of a systems biology approach to study dynamic processes in complex multicellular organoid structures, such as follicles, has the potential to translate to human follicles and study the development and interplay in other tissue organoids and embryos.
项目摘要 卵泡是卵巢的功能多细胞单位,负责妇女的生育和 卵巢内分泌功能。目前,年轻妇女和青春期前女孩被诊断患有癌症并面临 卵子毒性治疗在保留其生育能力方面的选择有限,首先要冷冻保存卵巢组织 化疗是最有希望的途径。只有原始的和早期的初级卵泡存活下来 超低温保存。为了生长和成熟,卵泡必须被分离并成组培养,因为如果 单独培养。分离的早期卵泡成组培养的翻译潜力有限,因为 队列中不同发育阶段和不同质量的卵泡,因此强调需要 开发成功单独培养早期卵泡的方法。体外卵泡成功率低 发育归因于复杂且鲜为人知的旁分泌和自分泌信号 毛囊中的细胞、邻近的毛囊及其微环境。我们的整体研究目标是:(A) 确定早期卵泡在体外激活和生长的关键因素,(B)建立 分泌因子、下游受体与转录之间的网络和功能关系 因素,以及(C)建立标准化的体外培养系统,促进早期的生长和成熟 单独的毛囊。这项研究的新颖性和意义在于发现了关键 控制和指导卵泡发育最早阶段的因素。A系统的应用 生物学方法研究复杂的多细胞类器官结构中的动态过程,如卵泡, 有可能转化为人类卵泡,并研究其他组织的发育和相互作用 器官和胚胎。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extracellular matrix-templating fibrous hydrogels promote ovarian tissue remodeling and oocyte growth.
  • DOI:
    10.1016/j.bioactmat.2023.10.001
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
  • 通讯作者:
Single-cell RNA-sequencing of retrieved human oocytes and eggs in clinical practice and for human ovarian cell atlasing.
Sequestered cell-secreted extracellular matrix proteins improve murine folliculogenesis and oocyte maturation for fertility preservation.
隔离的细胞分泌的细胞外基质蛋白可改善鼠的卵泡发生和卵母细胞的成熟,从而保存生育能力。
  • DOI:
    10.1016/j.actbio.2021.03.041
  • 发表时间:
    2021-09-15
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Tomaszewski CE;DiLillo KM;Baker BM;Arnold KB;Shikanov A
  • 通讯作者:
    Shikanov A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ariella Shikanov其他文献

Ariella Shikanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ariella Shikanov', 18)}}的其他基金

Immuno-Isolating capsule for delivery of cell-based therapy for restoration of ovarian endocrine function in an animal model
免疫隔离胶囊用于在动物模型中提供基于细胞的治疗以恢复卵巢内分泌功能
  • 批准号:
    10677892
  • 财政年份:
    2022
  • 资助金额:
    $ 35.72万
  • 项目类别:
A microphysiological engineered 3D system to the rescue of ovarian follicles
用于拯救卵泡的微生理工程 3D 系统
  • 批准号:
    10221014
  • 财政年份:
    2020
  • 资助金额:
    $ 35.72万
  • 项目类别:
Engineering an immuno-isolating hydrogel for restoring ovarian endocrine function
设计用于恢复卵巢内分泌功能的免疫隔离水凝胶
  • 批准号:
    10378486
  • 财政年份:
    2016
  • 资助金额:
    $ 35.72万
  • 项目类别:
Engineering an immuno-isolating hydrogel for restoring ovarian endocrine function
设计用于恢复卵巢内分泌功能的免疫隔离水凝胶
  • 批准号:
    9357581
  • 财政年份:
    2016
  • 资助金额:
    $ 35.72万
  • 项目类别:
Engineering an immuno-isolating hydrogel for restoring ovarian endocrine function
设计用于恢复卵巢内分泌功能的免疫隔离水凝胶
  • 批准号:
    10569553
  • 财政年份:
    2016
  • 资助金额:
    $ 35.72万
  • 项目类别:
Engineering an immuno-isolating hydrogel for restoring ovarian endocrine function
设计用于恢复卵巢内分泌功能的免疫隔离水凝胶
  • 批准号:
    10115862
  • 财政年份:
    2016
  • 资助金额:
    $ 35.72万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了