Synthetic biology tools for scalable production of medicinal plant terpenes
用于药用植物萜烯大规模生产的合成生物学工具
基本信息
- 批准号:10462759
- 负责人:
- 金额:$ 67.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAnabolismAntineoplastic AgentsArtemisininsCandidate Disease GeneCatalysisCell Culture TechniquesChemicalsChemistryClinicalComplexCouplingCytochrome P450CytochromesDevelopmentDigoxinDiterpenesDrug usageEngineeringEnzyme TestsEnzymesEquilibriumEtoposideGene Expression ProfilingGenesGenomeHealthHumanInvestigational TherapiesLeadMalignant NeoplasmsMedicinal PlantsMedicineMetabolic PathwayMetabolismMiningNatural ProductsNatureNicotianaOutcomeOxidation-ReductionOxidative StressOxidoreductasePaclitaxelPathway interactionsPlantsPodophyllumProductionProtein EngineeringProteinsRoleRouteSaccharomyces cerevisiaeSeriesSonic Hedgehog PathwaySourceSpecificityStructureTaxusTerpenesTestingTherapeuticTherapeutic UsesUncertaintyVariantVeratrumWorkYeastsanalogbiological adaptation to stresschemical synthesisclinical candidatecombinatorialcyclopaminedesigndrug candidateelectron donorenzyme pathwaygene discoveryhuman diseaseimprovedinhibitornovelnovel strategiesscaffoldscale upsesterterpenessynthetic biologytaxadienetherapeutic candidatetooltranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Plant terpenes are a critical source of clinically approved drugs and clinical candidates, yet very few complete
biosynthetic pathways have been characterized. Due to the lack of efficient chemical synthesis routes, many
complex plant natural product scaffolds including terpenes are currently still isolated from the producing plant
or plant cell culture and then converted to a clinically-used drug by semisynthetic routes (e.g. digoxin and taxol
on the 2015 WHO list of essential medicines). Lack of information regarding terpene biosynthetic pathways
severely limits the use of promising new approaches to produce plant molecules in heterologous hosts (e.g.
yeast strains that make artemisinin), as well as the intriguing possibility of engineering the biosynthetic
pathways to access analogs and non-natural derivatives with greater efficacy. Given the critical role of
medicinal plant terpenes in human health and utility of biosynthetic genes, we propose here systematic
discovery of key medicinal plant terpene biosynthesis pathways, taxol and cyclopamine, and the
engineering of yeast strains for scalable production. Classically, the discovery of plant pathways has been
slower and more painstaking than bacterial pathways; however, our team has demonstrated two approaches
that greatly accelerates identification of complete biosynthetic routes: (1) rapid combinatorial testing of
enzymes in a N. benthamiana heterologous host, and (2) transcriptional profiling and co-expression analysis to
identify pathway genes. This approach enabled the discovery of six enzymes that complete the pathway to the
etoposide aglycone from the unsequenced medicinal plant Podophyllum in a matter of months and has also led
to the discovery of numerous plant terpene pathways including a novel class of sesterterpenes. In this
proposal, we have prioritized pathways for valuable medicinal plant terpenes that are notoriously difficult to
access: the clinically used anticancer agent taxol and the clinical candidate cyclopamine. These compounds
are representative medicinal plant terpenes that will be used to demonstrate the broad utility of our discovery
and yeast engineering approach that can be applied for accessing many of the other >100,000 different plant
terpenes in nature. In addition to yeast strains that produce these highly valuable plant terpenes, a major
outcome of this work will be broadly applicable yeast synthetic biology tools for efficient production of multiple
cytochromes P450s in series which represents a major bottleneck for efficient transfer of plant pathways to
yeast heterologous hosts.
项目总结/摘要
植物萜烯是临床批准的药物和临床候选物的重要来源,但很少有完整的植物萜烯。
生物合成途径已被表征。由于缺乏有效的化学合成途径,许多
包括萜烯的复杂的植物天然产物支架目前仍从生产植物中分离
或植物细胞培养,然后通过半合成途径转化为临床使用的药物(例如地高辛和紫杉醇
2015年世界卫生组织基本药物清单)。缺乏有关萜类生物合成途径的信息
严重限制了在异源宿主(例如,
制造青蒿素的酵母菌株),以及设计生物合成青蒿素的有趣可能性。
获得类似物和非天然衍生物的途径具有更大的功效。考虑到
药用植物萜烯在人类健康和生物合成基因的效用,我们在这里提出系统
发现了关键的药用植物萜类生物合成途径,紫杉醇和环巴胺,
工程化酵母菌株以用于可规模化生产。传统上,植物途径的发现
比细菌途径更慢,更费力;然而,我们的团队已经证明了两种方法,
这大大加速了完整生物合成途径的鉴定:(1)快速组合测试
酶在N.本塞姆氏异源宿主,和(2)转录谱分析和共表达分析,
识别通路基因。这种方法使六种酶的发现成为可能,这些酶完成了通往蛋白质的途径。
在几个月的时间里,从未测序的药用植物鬼臼属中提取出依托泊苷元,
发现了许多植物萜途径,包括一类新的二倍半萜。在这
我们已经优先考虑了有价值的药用植物萜类化合物的途径,这些萜类化合物是出了名的难以分离的。
获取:临床使用的抗癌药紫杉醇和临床候选药物环巴胺。这些化合物
是代表性的药用植物萜烯,将用于证明我们的发现的广泛用途
和酵母工程的方法,可用于访问许多其他> 100,000不同的植物
自然界中的萜烯。除了生产这些高价值植物萜烯的酵母菌株外,
这项工作的成果将是广泛适用的酵母合成生物学工具,用于高效生产多种
细胞色素P450系列,这代表了植物途径有效转移到
酵母异源宿主
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAY D KEASLING其他文献
JAY D KEASLING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAY D KEASLING', 18)}}的其他基金
Synthetic biology tools for scalable production of medicinal plant terpenes
用于药用植物萜烯大规模生产的合成生物学工具
- 批准号:
10017156 - 财政年份:2019
- 资助金额:
$ 67.65万 - 项目类别:
Synthetic biology tools for scalable production of medicinal plant terpenes
用于药用植物萜烯大规模生产的合成生物学工具
- 批准号:
10653942 - 财政年份:2019
- 资助金额:
$ 67.65万 - 项目类别:
Synthetic biology tools for scalable production of medicinal plant terpenes
用于药用植物萜烯大规模生产的合成生物学工具
- 批准号:
10250333 - 财政年份:2019
- 资助金额:
$ 67.65万 - 项目类别:
Enzyme-Mediated Synthesis of Functionalized Terpene Structures
酶介导的功能化萜烯结构的合成
- 批准号:
7819500 - 财政年份:2009
- 资助金额:
$ 67.65万 - 项目类别:
Enzyme-Mediated Synthesis of Functionalized Terpene Structures
酶介导的功能化萜烯结构的合成
- 批准号:
7940803 - 财政年份:2009
- 资助金额:
$ 67.65万 - 项目类别:
PURIFIED ENZYME SYSTEMS FOR IN VITRO PLASMID REPLICATION
用于体外质粒复制的纯化酶系统
- 批准号:
3046327 - 财政年份:1992
- 资助金额:
$ 67.65万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 67.65万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 67.65万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 67.65万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 67.65万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 67.65万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 67.65万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 67.65万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 67.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 67.65万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 67.65万 - 项目类别: