Community-derived zinc metal regulation from monolayer to biofilm.
从单层到生物膜的群落衍生锌金属调节。
基本信息
- 批准号:10462373
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteriaBehaviorBindingBiomedical EngineeringBiophysicsBirthCell SurvivalCellsCellular AssayChemicalsCommunicationCommunitiesComplexConsumptionCuesDataDependenceDevelopmentDietDiseaseEcosystemEnvironmentEscherichia coliExcisionFluorescenceFoodFutureGene ExpressionGenesGram-Negative BacteriaHealthHomeHomeostasisHumanImmune systemIndividualInfectionIntestinesInvadedKnowledgeLifeMeasuresMediatingMentorsMetalsMicrobeMicrobial BiofilmsMicrofluidic MicrochipsMicrofluidicsMicronutrientsMissionModelingMonitorNational Institute of General Medical SciencesNeighborhoodsNutrientOrganismOutcomePathway interactionsPlayPredictive FactorProcessProteinsProxyPublic HealthPumpRecording of previous eventsRegulationResearchResearch PersonnelRoleSchemeSideSignal TransductionSignaling MoleculeSocial NetworkSpectrum AnalysisSystemTechniquesTestingTimeTrainingTransition ElementsVirulenceVirulentWorkZincantimicrobialbacterial communitycell communitychemical geneticschemical reactioncombatdesignefflux pumpenvironmental changeenvironmental stressorfitnessgenetic manipulationgenetically modified cellsgut microbiomeimage processingimaging platforminnovationmembermetal poisoningmicrobialmicrobial communitymicrobiomemonolayernovel therapeutic interventionopportunistic pathogenoptogeneticspathogenpathogenic microbeperiplasmquorum sensingrecruitresponseside effectsingle moleculeuptake
项目摘要
Project Summary and Abstract
In humans, the gut is home to the most extensive set of diverse bacteria actively working together to break
down nutrients for consumption, defend against pathogens, and train the immune system, as well as actively
communicating with the host cells to optimize their survival. The gut microbiome formed shortly after birth
changes over time in response to the diet and overall health of the host. When a pathogen invades the gut and
adversely affects the host’s health, it is treated with antibiotics. However, the treatment has the side effect of
indiscriminately altering the gut microbiome, leaving the host even more vulnerable to a future infection.
Communities of bacterial cells maintain a state of homeostasis by actively communicating with each other and
the host. This signaling system has the potential to serve as an innovative approach to treat virulent pathogens
by recruiting the microbiome’s own defense system. However, it is unclear what metabolites serve as a
signaling molecule to coordinate behavior. Transition metals play significant roles as micronutrients necessary
to carry out complex chemical reactions required to sustain life. Consequently, their concentrations inside the
cells are tightly regulated. This study focuses on zinc metal homeostasis due to its vital role in catalytic,
structural, and regulatory functions in Escherichia coli, a model Gram-negative bacterium and a common
bacterium in the environment, foods, and intestines. The overall objective of the proposed work is to determine
whether zinc can act as a chemical cue to coordinate behavior in a community of cells in the context of metal
homeostasis. My central hypothesis is that zinc acting as a signaling molecule can influence the cell’s
neighborhood gene expression state to account for a changing environment in which the micronutrient is in low
supply, excess, or used as a form of attack by a pathogen or the immune system. The hypothesis will be tested
using combined approaches of microfluidics devices, chemical/genetic manipulations, optogenetics,
single-molecule spectroscopy, and bulk biophysical/biomolecular/cellular assays. The proposed research has
two specific aims: 1) Define the coordination of uptake and efflux capabilities among individual cells in a
community as a function of zinc exposure. 2) Define the relation of periplasmic zinc concentration changes
among individual cells in a community upon perturbation of their metal homeostasis. The applicant will be
advised by a mentoring team that includes a chemist with expertise in single-molecule spectroscopy of
bacterial metal uptake/efflux pumps, a biomedical engineer with expertise in microfluidic systems, and a
microbiologist with expertise in bacterial metal homeostasis. The broader impact of this research is the creation
of a quantitative model to describe how zinc metal homeostasis is achieved at the community level and
delineate the role of the individual cells in a colony in facilitating homeostasis. The significance of this work is
the creation of fundamental knowledge for help designing new innovative antimicrobial therapy that utilizes
metal homeostasis.
.
项目概要和摘要
在人类中,肠道是最广泛的多种细菌的家园,这些细菌积极地协同工作,以打破
减少消耗的营养物质,防御病原体,训练免疫系统,以及积极地
与宿主细胞沟通以优化其生存。肠道微生物组在出生后不久形成
随着时间的推移而变化,以响应宿主的饮食和整体健康状况。当病原体侵入肠道并
对宿主的健康产生不利影响,可以用抗生素治疗。然而,该治疗有副作用
不加区别地改变肠道微生物组,使宿主更容易受到未来感染的影响。
细菌细胞群落通过积极地相互沟通和维持体内平衡状态
主人。该信号系统有潜力成为治疗有毒病原体的创新方法
通过招募微生物组自身的防御系统。然而,尚不清楚什么代谢物充当
协调行为的信号分子。过渡金属作为必需的微量营养素发挥着重要作用
进行维持生命所需的复杂化学反应。因此,它们的浓度在
细胞受到严格调控。这项研究的重点是锌金属稳态,因为它在催化、
大肠杆菌(一种模式革兰氏阴性细菌和常见细菌)的结构和调节功能
环境、食物和肠道中的细菌。拟议工作的总体目标是确定
锌是否可以作为化学线索来协调金属背景下细胞群落的行为
体内平衡。我的中心假设是,锌作为信号分子可以影响细胞的
邻近基因表达状态,以解释微量营养素处于低水平的环境变化
供应、过量或用作病原体或免疫系统攻击的一种形式。假设将被检验
使用微流体装置、化学/遗传操作、光遗传学的组合方法,
单分子光谱学和批量生物物理/生物分子/细胞测定。拟议的研究有
两个具体目标:1)定义单个细胞之间摄取和流出能力的协调
社区作为锌暴露的函数。 2)定义周质锌浓度变化的关系
群落中各个细胞之间的金属稳态受到扰动。申请人将是
由指导团队提供建议,其中包括具有单分子光谱专业知识的化学家
细菌金属摄取/流出泵、具有微流体系统专业知识的生物医学工程师以及
具有细菌金属稳态方面专业知识的微生物学家。这项研究更广泛的影响是创造
描述如何在社区层面实现锌金属稳态的定量模型
描述集落中单个细胞在促进体内平衡中的作用。这项工作的意义在于
创造基础知识,帮助设计新的创新抗菌疗法,利用
金属稳态。
。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Felix Steven Alfonso其他文献
Felix Steven Alfonso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Felix Steven Alfonso', 18)}}的其他基金
Community-derived zinc metal regulation from monolayer to biofilm.
从单层到生物膜的群落衍生锌金属调节。
- 批准号:
10609815 - 财政年份:2022
- 资助金额:
$ 6.76万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:














{{item.name}}会员




