Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance

确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性

基本信息

  • 批准号:
    MR/X009580/1
  • 负责人:
  • 金额:
    $ 74.14万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Cells are compartmentalized by membranes, which provide a barrier to the external environments of the cell and its organelles. They are dynamic structures consisting mostly of protein and lipid. They contain an important subset of proteins, integral membrane proteins, which reside within a lipid bilayer and are responsible for a variety of essential cellular processes, such as sensation, cellular regulation, and metabolism - making them essential for all life, as well as key drug targets.This project aims to uncover the structural dynamics of membrane proteins involved in antimicrobial resistance (AMR) of bacteria. AMR is recognised by the WHO and United Nations as a global health emergency. The traditional model for the development and marketing of new chemical antibiotics against drug-resistant bacteria has disintegrated due to the high cost ($1.5 billion per drug). The projects' focus is on multidrug efflux membrane protein systems which are known to play major roles in bacterial antibiotic resistance, specifically the resistance-nodulation-division (RND) efflux pumps. Their ability to expel a broad range of toxic substances out of bacteria significantly contributes to multidrug resistance against structurally and functionally diverse antimicrobial drugs. Understanding their structural dynamics is important, as these fundamental fluctuations frequently represent motions and states that are critical for protein function and drug efflux. To do this, chemical biology and advanced mass spectrometry strategies are being developed which enable membrane protein dynamics to be deciphered within complex environments, including in live cells. Using techniques such as Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS), which measures the extent and rate of exchange of protein backbone amide hydrogens for deuterium, both global and local information on protein interactions, ligand binding, and structural dynamics can be delivered. This will enable an unprecedented insight into the structure, dynamics, and function of these systems, particularly on the impact of drug and lipid interactions, and clinically relevant mutations. With the achievement of cellular structural dynamic insight offering a huge step forward in our understanding of how they shape the function of healthy and diseased cells. So far, we have explored prototypical resistance-nodulation-division (RND) multidrug efflux systems within a planktonic context. Planktonic bacteria are 'free-living' or 'free flowing' in suspension, commonly grown in flask cultures in the laboratory. They are not fixed to a community of bacteria and are designed to colonize new niches, but with a lower chance of survival. However, bacterial populations found naturally often form structured communities of cells called biofilms, which provide a more secure way for bacteria to reproduce and survive. Biofilms typically pose a great issue for implants as they provide an ideal solid support to promote growth, thus treatment of such infections is extremely difficult, normally resulting in the removal of the implant. Within this renewal we plan to expand our research in two ways: 1) the exploration of related efflux proteins and systems, away from the prototypical, to broaden our understanding of the fundamental role structural dynamics plays in the multidrug resistance phenotype, and 2) adapt our methods to interface with biofilm systems, so as to gain a 'true' context of the role these efflux systems play in bacterial infection and resistance. In conclusion there is an abundance of evidence to support the influence of RND pumps in the pathogenicity of bacteria. By understanding these modes of pathogenicity therapeutic methods can be designed to overcome them and treat infection. By utilizing different methods, focused on targeting RND function with efflux pump inhibitors (EPIs), reliance on new, more potent antibiotics can be ameliorated.
细胞由膜分隔,膜为细胞及其细胞器的外部环境提供屏障。它们是主要由蛋白质和脂质组成的动态结构。它们包含一个重要的蛋白质亚类,即膜蛋白。膜蛋白位于脂质双层内,负责各种基本的细胞过程,如感觉、细胞调节和代谢,使其成为所有生命所必需的,也是关键的药物靶点。本项目旨在揭示与细菌抗菌素耐药性(AMR)有关的膜蛋白的结构动力学。AMR被世界卫生组织和联合国确认为全球卫生紧急情况。开发和销售针对耐药细菌的新型化学抗生素的传统模式由于成本高昂(每种药物15亿美元)而瓦解。这些项目的重点是多药外排膜蛋白系统,已知这些系统在细菌抗生素耐药性中起主要作用,特别是耐药-增殖-分裂(RND)外排泵。它们将多种有毒物质排出细菌的能力显着有助于对结构和功能多样的抗菌药物的多药耐药性。了解它们的结构动力学是很重要的,因为这些基本波动经常代表对蛋白质功能和药物外排至关重要的运动和状态。为了做到这一点,化学生物学和先进的质谱分析策略正在开发中,使膜蛋白动力学在复杂的环境中,包括在活细胞中被破译。使用诸如氢/氘交换质谱(HDX-MS)的技术,其测量蛋白质骨架酰胺氢交换氘的程度和速率,可以提供关于蛋白质相互作用、配体结合和结构动力学的全局和局部信息。这将使我们能够前所未有地深入了解这些系统的结构、动力学和功能,特别是药物和脂质相互作用的影响以及临床相关突变。随着细胞结构动态洞察力的实现,我们在理解它们如何塑造健康和患病细胞的功能方面迈出了巨大的一步。到目前为止,我们已经探索了原型耐药-增殖-分裂(RND)多药外排系统内的一个质子背景。浮游细菌在悬浮液中“自由生活”或“自由流动”,通常在实验室的烧瓶培养中生长。它们并不固定在一个细菌群落中,而是被设计成殖民新的生态位,但存活的机会较低。然而,自然发现的细菌种群通常形成称为生物膜的结构化细胞群落,这为细菌繁殖和生存提供了更安全的方式。生物膜通常对植入物造成很大的问题,因为它们提供了理想的固体支持以促进生长,因此治疗这种感染非常困难,通常导致植入物的移除。在这次更新中,我们计划以两种方式扩大我们的研究:1)探索相关的外排蛋白和系统,远离原型,以拓宽我们对结构动力学在多药耐药表型中所起的基本作用的理解,以及2)使我们的方法适应与生物膜系统的界面,以便获得这些外排系统在细菌感染和耐药性中所起作用的“真实”背景。总之,有大量的证据支持RND泵在细菌致病性中的影响。通过了解这些致病模式,可以设计治疗方法来克服它们并治疗感染。通过利用不同的方法,专注于用外排泵抑制剂(EPI)靶向RND功能,可以改善对新的、更有效的抗生素的依赖。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eamonn Reading其他文献

Mechanistic Insight into the Assembly of the HerA-NurA Helicase-Nuclease DNA End Resection Complex using Native Mass Spectrometry
  • DOI:
    10.1016/j.bpj.2017.11.2433
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Zainab Ahdash;Andy M. Lau;Robert Thomas Byrne;Katja Lammens;Paula J. Booth;Eamonn Reading;Karl-Peter Hopfner;Argyris Politis
  • 通讯作者:
    Argyris Politis
Interrogating Membrane Protein Conformational Dynamics within Native Lipid Bilayers with Hydrogen-Deuterium Exchange Mass Spectrometry
  • DOI:
    10.1016/j.bpj.2017.11.454
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Eamonn Reading
  • 通讯作者:
    Eamonn Reading
Mg2+-dependent mechanism of environmental versatility in a multidrug efflux pump
多药外排泵环境多功能性的 Mg2 依赖性机制
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Russell Lewis;Muhammad R. Uddin;Katie M. Kuo;Laila M. N. Shah;Nicola J. Harris;Paula J. Booth;Dietmar Hammerschmid;James C. Gumbart;H. Zgurskaya;Eamonn Reading
  • 通讯作者:
    Eamonn Reading
Chromatographic phospholipid trapping for automated H/D 1 exchange mass spectrometry analysis of membrane protein-lipid 2 assemblies
色谱磷脂捕获用于膜蛋白-脂质 2 组装体的自动 H/D 1 交换质谱分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dietmar Hammerschmid;Valeria Calvaresi;Chloe Bailey;Benjamin Russell Lewis;Argyris Politis;Mike Morris;Laetitia Denbigh;Malcolm Anderson;Eamonn Reading
  • 通讯作者:
    Eamonn Reading
Mgsup2+/sup-dependent mechanism of environmental versatility in a multidrug efflux pump
多药外排泵中镁离子(Mg²⁺)依赖的环境适应性机制
  • DOI:
    10.1016/j.str.2024.12.012
  • 发表时间:
    2025-03-06
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Benjamin Russell Lewis;Muhammad R. Uddin;Katie M. Kuo;Laila M.N. Shah;Nicola J. Harris;Paula J. Booth;Dietmar Hammerschmid;James C. Gumbart;Helen I. Zgurskaya;Eamonn Reading
  • 通讯作者:
    Eamonn Reading

Eamonn Reading的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eamonn Reading', 18)}}的其他基金

Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
  • 批准号:
    MR/S015426/1
  • 财政年份:
    2019
  • 资助金额:
    $ 74.14万
  • 项目类别:
    Fellowship
Deciphering the conformational mechanisms of nascent membrane protein folding
破译新生膜蛋白折叠的构象机制
  • 批准号:
    BB/N011201/1
  • 财政年份:
    2016
  • 资助金额:
    $ 74.14万
  • 项目类别:
    Fellowship

相似国自然基金

超精密飞切机床不确定性结构动力学的参数辨识与性能提升研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
介电高弹体动力学特性不确定分析与主动控制方法研究
  • 批准号:
    12002014
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于微观和细观近场动力学模拟的砌体构件性能不确定性分析
  • 批准号:
    51978401
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
考虑混合不确定性因素的卫星结构系统动力学分析方法研究
  • 批准号:
    51875119
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
不确定性结构动力学模型确认方法及其在卫星中的应用研究
  • 批准号:
    11772018
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
结构振动响应的局部化非线性动力学建模和预测
  • 批准号:
    U1730129
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    联合基金项目
重型车铣复合机床结构动力学不确定性及其分析方法研究
  • 批准号:
    51705174
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
考虑不确定性的结构动力学响应模型可信度确认方法研究
  • 批准号:
    51505398
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
控制力矩陀螺的不确定耦合动力学、变结构控制与扰动重复补偿
  • 批准号:
    11402019
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于多尺度动态特性的机械结构不确定性优化设计理论、方法及其应用研究
  • 批准号:
    51275459
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Probing structural dynamics and regulatory mechanisms of RNA-guided CRISPR-Cas12 endonucleases and their analogues
职业:探索 RNA 引导的 CRISPR-Cas12 核酸内切酶及其类似物的结构动力学和调控机制
  • 批准号:
    2339799
  • 财政年份:
    2024
  • 资助金额:
    $ 74.14万
  • 项目类别:
    Continuing Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.14万
  • 项目类别:
    Fellowship
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
  • 批准号:
    24K18450
  • 财政年份:
    2024
  • 资助金额:
    $ 74.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Structural dynamics and optoelectronics of anharmonic soft semiconductors
职业:非谐波软半导体的结构动力学和光电子学
  • 批准号:
    2339721
  • 财政年份:
    2024
  • 资助金额:
    $ 74.14万
  • 项目类别:
    Continuing Grant
A triptych of structural dynamics in the advancement of global health (in)equity in CAR-T cells and gene therapies
CAR-T 细胞和基因疗法推动全球健康(不)公平的结构动力学三联体
  • 批准号:
    24K15887
  • 财政年份:
    2024
  • 资助金额:
    $ 74.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structural Basis of Cyclic Nucleotide Signal Translation and Inhibition
环核苷酸信号翻译和抑制的结构基础
  • 批准号:
    483395
  • 财政年份:
    2023
  • 资助金额:
    $ 74.14万
  • 项目类别:
    Operating Grants
Stabilization, growth, and dynamics at the ciliary tip.
睫状体尖端的稳定、生长和动态。
  • 批准号:
    478242
  • 财政年份:
    2023
  • 资助金额:
    $ 74.14万
  • 项目类别:
    Operating Grants
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
  • 批准号:
    10653587
  • 财政年份:
    2023
  • 资助金额:
    $ 74.14万
  • 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
  • 批准号:
    10785755
  • 财政年份:
    2023
  • 资助金额:
    $ 74.14万
  • 项目类别:
Elucidating the dynamical and structural molecular factors at the origin of non-enzymatic protein-protein and protein-DNA cross-links
阐明非酶蛋白质-蛋白质和蛋白质-DNA 交联起源的动力学和结构分子因素
  • 批准号:
    10709399
  • 财政年份:
    2023
  • 资助金额:
    $ 74.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了