Biochemical and Biophysical Studies of Human Ribonucleotide Reductase
人核糖核苷酸还原酶的生化和生物物理研究
基本信息
- 批准号:10463910
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Aerobic BacteriaAllosteric RegulationAreaBaltimoreBindingBinding SitesBiochemicalBiological AssayBiologyBiophysicsCatalysisCatalytic DomainChemistryClofarabineCollaborationsComplexConeCryoelectron MicroscopyCrystallizationDNA RepairDNA biosynthesisDataDeoxyribonucleotidesDeuteriumDevelopmentDrug DesignElectron MicroscopyEnzyme InhibitionEnzymesEukaryotaEyeFDA approvedFutureGenerationsGenomic InstabilityHoloenzymesHumanHuman ActivitiesHydrogenImmunoglobulin Class SwitchingImpairmentInvestigationKnowledgeLaboratoriesLeadLifeMaintenanceMalignant NeoplasmsMarylandMass Spectrum AnalysisMediatingMolecularMorphologyMovementMutagenesisNational Institute of Child Health and Human DevelopmentNegative StainingNucleotidesPharmacy SchoolsProteinsReactionRegulationResolutionRibonucleotide ReductaseRibonucleotidesRoentgen RaysRotationServicesSiteStructureSurfaceTechniquesTestingUniversitiesVariantWorkanalytical ultracentrifugationbasebiophysical analysisbiophysical techniquescancer therapychemotherapeutic agentcofactorcryogenicsenzyme activityexperimental studyimprovedinsightnovelnovel anticancer drugsedimentation velocitytargeted cancer therapytraittripolyphosphate
项目摘要
PROJECT SUMMARY
Proper maintenance of deoxyribonucleotide triphosphate (dNTP) pools is necessary for high-fidelity DNA
replication and repair. Even small changes in the dNTP pools can lead to high rates of mutagenesis, which is
commonly seen in human cancers. A key regulator of dNTP pools is ribonucleotide reductase (RNR), the sole
enzyme capable of de novo generation of deoxyribonucleotides via radical chemistry. RNRs are conserved
across most forms of life, and are split up into three classes based on the cofactor that generates the radical
necessary for catalysis. Most of our mechanistic understanding of RNRs comes from class Ia RNRs, which is
the class found in humans. The activity of human RNR (HsRNR) is allosterically regulated by the binding of ATP
or dATP to the catalytic subunit (α), where the binding of these effectors acts as an on or off switch, respectively.
The binding of these effectors also induces the formation of two morphologically identical α6 rings, α6-ATP and
α6-dATP. The two hexamers vary in their stability: where only α6-ATP can be disassembled by the radical-
generating subunit (β) to form the holoenzyme, whereas α6-dATP is undisturbed by addition of the β subunit.
The chemotherapeutic agent clofarabine triphosphate is a dATP-mimic that is hypothesized to allosterically
inhibit HsRNR, inducing the formation of α6-dATP-like “persistent hexamers.” These results suggest that
targeting allosteric activity sites of HsRNR is a promising approach for development of new anticancer drugs,
but the molecular mechanisms underpinning activity regulation have not been fully established. Protein
regulators of HsRNR have also been identified, but there is no structural data on the mode of binding of any
protein regulator and limited characterization of the molecular mechanism of protein-based regulation of HsRNR.
Therefore, we propose studies that aim to answer questions about the molecular mechanisms of activity
regulation of HsRNR, using biochemical and biophysical techniques to probe both HsRNR activity regulation via
ATP/dATP and also HsRNR activity regulation via protein regulators. The results of this work will provide key
details into the activity regulation of HsRNR, along with the first structure of RNR in complex with a protein
regulator. This work will be carried out in the lab of Prof. Catherine L. Drennan at the MIT Department of Biology
and using the services provided by Dr. Daniel Derege and Dr. Patrick Wintrode of the Mass Spectrometry facility
at the University of Maryland: Baltimore’s School of Pharmacy and in collaboration with the laboratory of Dr.
Mary Dasso at the National Institutes of Child Health and Human Development.
项目摘要
正确维护脱氧核糖核苷酸三磷酸(dNTP)池对于高保真DNA是必要的
复制和修复。即使dNTP池中的微小变化也会导致高诱变率,这是不可能的。
常见于人类癌症。dNTP库的关键调节因子是核糖核苷酸还原酶(RNR),其是唯一的调节因子。
能够通过自由基化学从头产生脱氧核糖核苷酸的酶。RNR是保守的
在大多数生命形式中,并根据产生游离基的辅因子分为三类
催化所必需的。我们对RNR的大部分机械理解来自Ia类RNR,
在人类中发现的类。人RNR(HsRNR)的活性受ATP结合的变构调节
或dATP与催化亚基(α)的结合,这些效应物的结合分别充当开关。
这些效应物的结合也诱导两个形态相同的α6环,α6-ATP和
α6-dATP。两种六聚体的稳定性不同:只有α6-ATP可以被自由基-
生成亚基(β)以形成全酶,而α6-dATP不受β亚基的加入的干扰。
化学治疗剂三磷酸氯法拉滨是一种dATP模拟物,
抑制HsRNR,诱导α6-dATP样“持久六聚体”的形成。这些结果表明
靶向HsRNR的变构活性位点是开发新抗癌药物的有前景的方法,
但支持活性调节的分子机制尚未完全建立。蛋白
HsRNR的调节剂也已被确定,但没有任何结合模式的结构数据。
蛋白质调节剂和有限的表征的分子机制的蛋白质为基础的调节HsRNR。
因此,我们提出的研究,旨在回答有关活动的分子机制的问题
调节HsRNR,使用生物化学和生物物理技术来探测HsRNR活性调节,
ATP/dATP和HsRNR活性调节通过蛋白质调节剂。这项工作的结果将提供关键
详细介绍了HsRNR的活性调节,沿着RNR与蛋白质复合的第一个结构
调节器这项工作将在Catherine L.麻省理工学院生物系的Drennan
并使用质谱设施的丹尼尔德雷格博士和帕特里克温特罗德博士提供的服务
在马里兰州大学:巴尔的摩的药学院,并与博士的实验室合作。
国家儿童健康和人类发展研究所的玛丽·达索说。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerardo Perez Goncalves其他文献
Gerardo Perez Goncalves的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerardo Perez Goncalves', 18)}}的其他基金
Biochemical and Biophysical Studies of Human Ribonucleotide Reductase
人核糖核苷酸还原酶的生化和生物物理研究
- 批准号:
10613912 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
相似海外基金
Molecular insights into the allosteric regulation of opioid receptors
阿片受体变构调节的分子见解
- 批准号:
DE240100931 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Discovery Early Career Researcher Award
Allosteric regulation of lysine degradation as a novel pathophysiological mechanism in glutaric aciduria type 1
赖氨酸降解的变构调节作为 1 型戊二酸尿症的一种新的病理生理机制
- 批准号:
10720740 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Elucidating the Mechanism for Allosteric Regulation of SIRT1 through the N-terminal Region
阐明 SIRT1 通过 N 末端区域变构调节的机制
- 批准号:
10627735 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10330809 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10797746 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Structural and functional studies of allosteric regulation of metabolic enzymes
代谢酶变构调节的结构和功能研究
- 批准号:
RGPIN-2020-04281 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Discovery Grants Program - Individual
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10552651 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Allosteric regulation of human cystathionine beta-synthase
人胱硫醚β-合酶的变构调节
- 批准号:
10602404 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Allosteric regulation of human cystathionine beta-synthase
人胱硫醚β-合酶的变构调节
- 批准号:
10381000 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Structural basis for allosteric regulation of RyR1
RyR1 变构调节的结构基础
- 批准号:
10366087 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:














{{item.name}}会员




