Leveraging linked registry and electronic health records to examine long-term patient outcomes after peripheral vascular intervention"
利用关联的登记和电子健康记录来检查外周血管介入治疗后患者的长期结果”
基本信息
- 批准号:10463785
- 负责人:
- 金额:$ 16.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdverse eventAffectAlgorithmsAmputationAreaAwardBalloon AngioplastyBlood VesselsCharacteristicsClinicalDataData AnalysesData CollectionData LinkagesData ScienceData SetData SourcesDecision MakingDetectionDevelopmentDevicesElectronic Health RecordEvaluationEventFosteringGenerationsGoalsGrantHealthHeterogeneityHospitalsInformaticsInstitutionInterventionKnowledgeLabelLeadLeadershipLengthLesionLimb structureLinkLongitudinal StudiesMachine LearningMeasuresMedical DeviceMentorsMethodsMissionNatural Language ProcessingNatural Language Processing pipelineNew York CityObservational StudyOperative Surgical ProceduresOutcomeOutcome AssessmentOutcomes ResearchPatient-Focused OutcomesPatientsPerformancePeripheralPeripheral arterial diseasePersonsPredictive ValueProceduresQuality of lifeRadiology SpecialtyRandomized Controlled TrialsRegistriesReportingResearchResearch ActivityResearch PersonnelResearch SupportSamplingSensitivity and SpecificitySeveritiesSeverity of illnessStentsSymptomsSystemTextTrainingUnited States National Institutes of HealthUpdateVascular DiseasesWorkWritingcareer developmentcohortelectronic structureepidemiology studyfollow-uphealth dataimprovedinnovationinterdisciplinary approachmachine learning methodmultidisciplinarymultiple data sourcesnovelpatient registrypatient subsetsresponsible research conductskillstooltreatment effectunstructured data
项目摘要
Leveraging linked registry and electronic health records to examine long-term patient outcomes after
peripheral vascular intervention
Project Summary/Abstract
Peripheral arterial disease (PAD) affects over 200 million people worldwide. Peripheral vascular interventions
(PVI) are the most common procedures that are performed to manage PAD. Existing randomized controlled
trials (RCTs) and observational studies of patient outcomes after PVIs all had limited follow-up lengths due to
difficulties in long-term data collections. In addition, heterogeneity of treatment effect (HTE) for stent placement
vs. percutaneous transluminal angioplasty (PTA) alone has not been well understood with the current
approach of effect modifier assessment. Real-world data (RWD), particularly registries linked with electronic
health data (EHR), are useful for studying long-term outcomes after vascular procedures. However, methods
for working with multiple data sources and analyzing unstructured text data are still evolving. The proposed
research aims to address current evidence gaps in long-term patient outcomes after PVI procedures. This will
be facilitated by innovatively apply and refine data linkage, natural language processing (NLP), and effect
modifier assessment methods. Specifically, this project will link registry and EHR data to 1) examine long-term
major adverse limb events after stent placement vs. PTA alone as well as assess heterogeneity of treatment
effect by patient characteristics; 2) develop an NLP pipeline with machine learning methods to analyze
unstructured text data and examine long-term efficacy endpoints after stent placement vs. PTA alone, and; 3)
establish feasibility and updating requirements for the deployment of the NLP tool for long-term PVI outcome
assessment to other institutions. To support the research activities and the transition toward independence, the
candidate will undertake the following career development activities during the award period: 1) gaining an in-
depth understanding of NLP and machine learning methods; 2) refining data science expertise to integrate
EHR into medical device epidemiologic research; 3) strengthening knowledge in current and novel vascular
disease treatment; 4) developing and improving skills in grant writing and academic leadership; 5) training in
responsible conduct of research. The candidate will be mentored by a team of experts with complementary
strengths in surgical and device outcomes research, natural language processing and machine learning, and
vascular disease and surgery. The proposed career development and research activities will develop the
candidate's skillset and expertise and lead to an R01 level application. The candidate's long-term goal is to
become an independent researcher focusing on the development and application of advanced multidisciplinary
methods in the evaluation of surgical and device outcomes in the vascular disease area, supporting clinical,
patient, and regulatory decision-making.
利用关联的登记表和电子健康记录检查患者的长期预后
外周血管介入治疗
项目摘要/摘要
外周动脉疾病(PAD)影响着全球超过2亿人。外周血管介入治疗
(PVI)是管理PAD最常见的程序。现有随机对照
静脉注射后患者结局的试验(RCT)和观察研究都有有限的随访时间,原因是
长期数据收集方面的困难。此外,支架置入治疗效果的异质性(Hte)
与经皮腔内血管成形术(PTA)相比,目前还不能很好地理解
效果修改剂评价方法。真实世界数据(RWD),特别是与电子数据链接的登记处
健康数据(EHR),对于研究血管手术后的长期结果很有用。但是,方法
因为处理多个数据源和分析非结构化文本数据仍在不断发展。建议数
这项研究旨在解决PVI术后患者长期预后方面的现有证据差距。这将是
通过创新地应用和改进数据链接、自然语言处理(NLP)和效果来促进
修改量评估方法。具体地说,该项目将把登记处和电子健康记录数据联系起来,以1)长期审查
支架置入后的主要不良肢体事件与单纯PTA相比,以及评估治疗的异质性
2)用机器学习的方法开发NLP流水线进行分析
非结构化文本数据和检查支架置入后与单纯PTA后的长期疗效终点,以及;3)
确定部署NLP工具的可行性和更新要求,以期取得长期的重大利益攸关方成果
对其他机构的评估。为了支持研究活动和向独立的过渡,
候选人将在获奖期间从事以下职业发展活动:1)获得-
深入了解NLP和机器学习方法;2)提炼数据科学专业知识以整合
将EHR纳入医疗器械流行病学研究;3)加强对现有血管和新血管的知识
疾病治疗;4)发展和提高赠款撰写和学术领导能力;5)培训
负责任的研究行为。候选人将由一个专家团队进行指导,该团队将与
在手术和设备结果研究、自然语言处理和机器学习方面的优势,以及
血管疾病和外科手术。拟议的职业发展和研究活动将发展
应聘者的技能和专业知识,并导致R01级的申请。候选人的长期目标是
成为专注于先进多学科开发和应用的独立研究员
方法在血管疾病领域评估手术和设备的结果,支持临床,
耐心和监管决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jialin Mao其他文献
Jialin Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jialin Mao', 18)}}的其他基金
Leveraging linked registry and electronic health records to examine long-term patient outcomes after peripheral vascular intervention"
利用关联的登记和电子健康记录来检查外周血管介入治疗后患者的长期结果”
- 批准号:
10676773 - 财政年份:2021
- 资助金额:
$ 16.19万 - 项目类别:
Leveraging linked registry and electronic health records to examine long-term patient outcomes after peripheral vascular intervention"
利用关联的登记和电子健康记录来检查外周血管介入治疗后患者的长期结果”
- 批准号:
10283367 - 财政年份:2021
- 资助金额:
$ 16.19万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 16.19万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 16.19万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 16.19万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 16.19万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 16.19万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 16.19万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 16.19万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 16.19万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 16.19万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 16.19万 - 项目类别: