Elucidating the molecular mechanisms behind human neurodevelopmental disorders using brain organoids
利用脑类器官阐明人类神经发育障碍背后的分子机制
基本信息
- 批准号:10467918
- 负责人:
- 金额:$ 71.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-16 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAppearanceBrainBrain regionCalciumCellsComplexCouplingCulture TechniquesDNA Sequence AlterationDefectDevelopmentDiseaseDisease modelElectrophysiology (science)EmbryoEpilepsyExhibitsFrequenciesFunctional disorderGangliaGene MutationGenesGoalsGrowthHigh Frequency OscillationHumanImageLinkMethodsMethyl-CpG-Binding Protein 2MicrocephalyModelingMolecularMosaicismMutationNatureNervous System PhysiologyNeurodevelopmental DisorderNeurologicNeuronal DysfunctionNeuronsNeurophysiology - biologic functionOrganoidsPathologicPathologyPathway interactionsPatientsPharmaceutical PreparationsPhenotypePlant RootsPopulationReportingRett SyndromeSCN8A geneSamplingSeizuresSeveritiesSliceStructural defectStructureSymptomsSystemTestingTherapeuticVariantWorkX ChromosomeZika Virusclinical phenotypeepileptic encephalopathiesexcitatory neuronexperimental studyglobal healthinduced pluripotent stem cellinhibitory neuronlissencephalynervous system disordernetwork dysfunctionneural circuitneural networkneuropathologyneuropsychiatric disorderneuroregulationnovel therapeuticspathogenpreservationprotein functionrelating to nervous systemsensorstemstem cell modeltherapeutic developmenttool
项目摘要
PROJECT SUMMARY
Neurodevelopmental and neuropsychiatric disorders are a global health problem; yet remarkably little is known
about their neurological basis in humans. Consequently, treatment options remain limited. The advent of
methods to direct the formation of neurons from human embryonic and induced pluripotent stem cells
(collectively hPSCs) provides unprecedented opportunities to both investigate how the function of human
neural circuits is subverted by neurological disease and screen for new therapies. A major step towards these
goals has been realized by the development of organoid culture techniques through which hPSC can be
directed to form spatially organized, brain-like structures. Thus far, brain organoids have been successfully
employed to model the impact of genetic mutations and environmental pathogens that result in overt defects in
brain growth. However, overall brain structure is preserved in most neurological disorders, and defects are
primarily defined by alterations in neural activities. Major challenges thus remain in developing means for
defining the organization and function of neural networks within organoids and using this approach to explore
underlying disease mechanisms and therapeutic opportunities. In our recent work, we discovered that
remarkably complex neural network activities can emerge through the creation of cortex-ganglionic eminence
fusion organoids, which permits the intermixing and functional coupling of excitatory and inhibitory neurons.
Using a combination of calcium sensor imaging and electrophysiological approaches, we identified that fusion
organoids exhibit sustained multifrequency neural oscillations reminiscent of higher network functions seen in
intact brain samples and slice cultures. We further developed a fusion organoid model for the
neurodevelopmental disorder Rett syndrome and found that organoids harboring mutations in the MECP2
gene exhibit markedly abnormal neural network activities including episodes of hypersynchronous bursting,
loss of low-to-mid frequency oscillatory rhythms, and abnormal appearance of epileptiform high frequency
oscillations. Together, these studies illustrate the extraordinary potential for the fusion organoid platform to
report both normal and dysfunctional neural network functions and recapitulate salient pathological features
seen in Rett patients such as seizures. Here, we seek to address three central questions for elucidating the
mechanisms underlying neural network dysfunction associated with Rett syndrome and other
neurodevelopmental disorders. First, does neural network dysfunction seen in Rett syndrome organoids
generated from patients harboring different mutations correlate with the nature of the mutation? Second, what
is the impact of cellular mosaicism in MECP2 function on neural network activities? Third, do organoid models
for different neurological diseases with a seizure component exhibit shared or distinct network dysfunction
profiles? Through our studies, we will explore how brain organoids can be best utilized to determine the root
causes of a range of human neuropathologies and work towards the goal of discovering new treatments.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BENNETT G NOVITCH其他文献
BENNETT G NOVITCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BENNETT G NOVITCH', 18)}}的其他基金
Elucidating the molecular mechanisms behind human neurodevelopmental disorders using brain organoids
利用脑类器官阐明人类神经发育障碍背后的分子机制
- 批准号:
10574589 - 财政年份:2022
- 资助金额:
$ 71.92万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10085982 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10224910 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10686876 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Notch-mediated modulation of Sonic hedgehog signaling in neural fate specification and differentiation
神经命运规范和分化中Notch介导的Sonic hedgehog信号传导调节
- 批准号:
10223452 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10426152 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Molecular Pathways Controlling Respiratory Motor Neuron Formation and Function
控制呼吸运动神经元形成和功能的分子途径
- 批准号:
8965412 - 财政年份:2015
- 资助金额:
$ 71.92万 - 项目类别:
Regulation of neural progenitor functions underlying cortical growth & complexity
皮质生长背后的神经祖细胞功能的调节
- 批准号:
9281074 - 财政年份:2015
- 资助金额:
$ 71.92万 - 项目类别:
Transcriptional regulation of neuronal differentiation
神经元分化的转录调控
- 批准号:
8322159 - 财政年份:2010
- 资助金额:
$ 71.92万 - 项目类别:
Transcriptional regulation of neuronal differentiation
神经元分化的转录调控
- 批准号:
8022250 - 财政年份:2010
- 资助金额:
$ 71.92万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 71.92万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 71.92万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Studentship