Molecular Pathways Controlling Respiratory Motor Neuron Formation and Function
控制呼吸运动神经元形成和功能的分子途径
基本信息
- 批准号:8965412
- 负责人:
- 金额:$ 32.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-15 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmyotrophic Lateral SclerosisAutonomic ganglionAutonomic nervous systemAxonBirthBrain StemBreathingCause of DeathCellsCessation of lifeCharacteristicsDefectDetectionDevelopmentDiseaseFetal DevelopmentFiberFunctional disorderFutureGenesGrowthHealthHereditary DiseaseHypercapnic respiratory failureIn SituInjection of therapeutic agentInjuryLimb structureLocationMessenger RNAMethodsMolecularMotorMotor ActivityMotor NeuronsMovementMuscleNeurodegenerative DisordersNeuronsPathway interactionsPlayPopulationPositioning AttributeProcessResearchRespirationRespiratory DiaphragmRespiratory MusclesRespiratory physiologyRoleSleep Apnea SyndromesSpinalSpinal CordSpinal Muscular AtrophySpinal cord damageSubgroupSynapsesSystemTherapeuticTimeTracerTransgenic OrganismsWorkbasegenetic manipulationinsightmutantnerve supplynervous system disorderneuron lossnovelorganizational structureprogramsrepairedresearch studyrespiratoryrespiratory distress syndromesegregationtranscription factor
项目摘要
DESCRIPTION (provided by applicant): Breathing is the most essential of our motor activities that starts at birth and persists until death. At the core of this vital function are respiratory mtor neurons (MNs) in the spinal cord that innervate distinct muscle targets such as the diaphragm, intercostals, and abdominals to produce alternating inspiratory and expiratory movements. These activities are principally driven by descending inputs provided by rhythm generating neurons in the brainstem that selectively form monosynaptic synapses with respiratory MNs while avoiding other MN classes. Defects in respiratory motor circuit formation can result in a variety of breathing disorders ranging from sleep apneas to potentially fatal respiratory distress syndromes. Moreover, respiratory motor loss or dysfunction is the primary cause of death in many neurodegenerative diseases and traumatic injuries. Despite the importance of respiratory MNs function for survival, remarkably little is known about the developmental origins of these cells and the mechanisms that guide their assembly into functional motor circuits. In our previous work, we identified a novel population of spinal MNs termed the hypaxial motor column (HMC) associated with innervation of body wall muscles and the diaphragm. We further discovered that HMC MN formation is actively suppressed by the transcription factor Foxp1. In Foxp1 mutants, MNs acquire HMC characteristics and display exuberant growth towards respiratory muscle targets. From these findings we conclude first that respiratory MNs are likely the mature derivatives of the HMC, and second that Foxp1 plays a critical role suppressing the program of respiratory MN formation. We build upon these observations to elucidate the developmental program through which respiratory motor circuits are constructed. In Aim 1, we will examine the organizational features of the HMC, particularly its subdivision into pools associated with inspiratory and expiratory motor activities. We will also examine the function of transcription factors that our preliminary studies show are reciprocally expressed by inspiratory and expiratory MN subpopulations and thus candidates for conveying these MN activities. Lastly, in Aim 2, we will examine how descending respiratory premotor inputs from the brainstem respond to changes in either the molecular identity of different MN subtypes or their settling position within the spinal cord in terms of axonal targeting and selection of synaptic partners. Through these studies we hope to gain fundamental insights into how respiratory motor circuits are constructed and the organizational principles of descending pathways in the CNS. This information will be invaluable for understanding the basis of disorders that impair respiratory functions, and future efforts to evoke repair of the diseased or damaged spinal cord by harnessing these developmental mechanisms.
描述(由适用提供):呼吸是我们运动活动中最重要的,该活动始于出生,一直持续到死亡。这一重要功能的核心是脊髓中的呼吸道MTOR神经元(MN),这些神经元(MNS)支配了不同的肌肉靶标,例如膜片,骨间和腹部,以产生替代的灵感和到期运动。这些活动主要是由节奏在脑干中产生神经元提供的降序输入驱动的,这些神经元在脑干中有选择地形成单突触突触,同时避免了其他MN类。呼吸运动电路形成的缺陷会导致各种呼吸障碍,从睡眠呼吸暂停到潜在的致命呼吸窘迫综合征。此外,呼吸运动损失或功能障碍是许多神经退行性疾病和创伤性损伤的主要原因。尽管呼吸道MNS功能对于生存具有重要意义,但对于这些细胞的发育起源以及将其组装引导成功能性运动电路的机制知之甚少。在我们以前的工作中,我们确定了与体壁肌肉和隔膜神经相关的高轴运动柱(HMC)的新型脊髓MN人群。我们进一步发现,HMC MN的形成被转录因子FOXP1积极抑制。在FOXP1突变体中,MNS获得了HMC特征并显示出呼吸肌靶标的旺盛生长。从这些发现中,我们首先包含呼吸道MN可能是HMC的成熟衍生物,其次是FOXP1起着抑制呼吸道MN形成程序的关键作用。我们基于这些观察结果,以阐明构建呼吸运动电路的发展计划。在AIM 1中,我们将研究HMC的组织特征,尤其是其细分为与灵感和到期运动活动相关的池。我们还将研究我们的初步研究表明的转录因子的功能,通过灵感和到期的MN亚群相互表示,从而传达了这些MN活动。最后,在AIM 2中,我们将研究来自脑干的下降呼吸前输入如何应对不同MN亚型的分子身份的变化,或者在轴突靶向和选择突触伙伴的角度方面的分子身份或它们在脊髓中的固定位置。通过这些研究,我们希望获得有关如何构建呼吸电路和中枢神经系统下降途径的组织原理的基本见解。这些信息对于理解损害呼吸功能的疾病的基础以及通过利用这些发育机制来唤起患病或受损的脊髓修复的努力将是无价的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BENNETT G NOVITCH其他文献
BENNETT G NOVITCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BENNETT G NOVITCH', 18)}}的其他基金
Elucidating the molecular mechanisms behind human neurodevelopmental disorders using brain organoids
利用脑类器官阐明人类神经发育障碍背后的分子机制
- 批准号:
10574589 - 财政年份:2022
- 资助金额:
$ 32.99万 - 项目类别:
Elucidating the molecular mechanisms behind human neurodevelopmental disorders using brain organoids
利用脑类器官阐明人类神经发育障碍背后的分子机制
- 批准号:
10467918 - 财政年份:2022
- 资助金额:
$ 32.99万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10085982 - 财政年份:2020
- 资助金额:
$ 32.99万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10224910 - 财政年份:2020
- 资助金额:
$ 32.99万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10686876 - 财政年份:2020
- 资助金额:
$ 32.99万 - 项目类别:
Notch-mediated modulation of Sonic hedgehog signaling in neural fate specification and differentiation
神经命运规范和分化中Notch介导的Sonic hedgehog信号传导调节
- 批准号:
10223452 - 财政年份:2020
- 资助金额:
$ 32.99万 - 项目类别:
Mechanisms underlying non-REM sleep and neural oscillation abnormalities in Dup15q and Rett Syndrome: Effects on Intellectual Disability
Dup15q 和 Rett 综合征中非快速眼动睡眠和神经振荡异常的机制:对智力障碍的影响
- 批准号:
10426152 - 财政年份:2020
- 资助金额:
$ 32.99万 - 项目类别:
Regulation of neural progenitor functions underlying cortical growth & complexity
皮质生长背后的神经祖细胞功能的调节
- 批准号:
9281074 - 财政年份:2015
- 资助金额:
$ 32.99万 - 项目类别:
Transcriptional regulation of neuronal differentiation
神经元分化的转录调控
- 批准号:
8322159 - 财政年份:2010
- 资助金额:
$ 32.99万 - 项目类别:
Transcriptional regulation of neuronal differentiation
神经元分化的转录调控
- 批准号:
8022250 - 财政年份:2010
- 资助金额:
$ 32.99万 - 项目类别:
相似国自然基金
磷脂结合蛋白Annexin A11相变在肌萎缩性脊髓侧索硬化症中的作用及机制研究
- 批准号:82101509
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
磷脂结合蛋白Annexin A11相变在肌萎缩性脊髓侧索硬化症中的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
C9orf72 多聚重复蛋白对miRNA生成和功能影响及其在ALS/FTD发病机制中的作用研究
- 批准号:81701261
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
线粒体蛋白CHCHD10稳定突触的作用及机制研究
- 批准号:31701036
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
伴TBK1突变肌萎缩性脊髓侧索硬化症中RIPK1活化的意义及机制研究
- 批准号:31701207
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Amyotrophic Lateral Sclerosis: treating the circuit behind the disease
肌萎缩侧索硬化症:治疗疾病背后的回路
- 批准号:
MR/Y014901/1 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
Research Grant
Dysregulation of RNA processing as a driver of motor neuron dysfunction in Amyotrophic Lateral Sclerosis
RNA 加工失调是肌萎缩侧索硬化症运动神经元功能障碍的驱动因素
- 批准号:
MR/Y014286/1 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
Research Grant
Fasciculation IN Amyotrophic Lateral Sclerosis Using MUMRI (FINALSUM)
使用 MUMRI 治疗肌萎缩侧索硬化症的肌束颤动 (FINALSUM)
- 批准号:
MR/Y503502/1 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
Research Grant
I-Corps: Developing A Blood-Based Biomarker for the Detection and Monitoring of Amyotrophic Lateral Sclerosis
I-Corps:开发一种基于血液的生物标志物,用于检测和监测肌萎缩侧索硬化症
- 批准号:
2317745 - 财政年份:2023
- 资助金额:
$ 32.99万 - 项目类别:
Standard Grant
Investigation of UBQLN2 in neuronal dysfunction and ALS-FTD
UBQLN2 在神经元功能障碍和 ALS-FTD 中的研究
- 批准号:
10638277 - 财政年份:2023
- 资助金额:
$ 32.99万 - 项目类别: