A 3D vascularized islet biomimetic to model type 1 diabetes
用于 1 型糖尿病模型的 3D 血管化胰岛仿生模型
基本信息
- 批准号:10467061
- 负责人:
- 金额:$ 100.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAllelesAllogeneic LymphocyteArchitectureAutoantigensAutoimmune DiseasesAutologousBeta CellBiochemicalBiocompatible MaterialsBiological AssayBiological ModelsBiologyBiomedical EngineeringBiomimeticsBloodBlood VesselsCadaverCell CommunicationCell DeathCell modelCellsClone CellsDiabetes MellitusDiagnosisDiseaseEndocrineEndothelial CellsEtiologyEventExhibitsExtravasationFunctional disorderGeneticGoalsHumanHuman EngineeringHyperglycemiaHypoxiaImmuneImmune mediated destructionImmune systemImmunologicsImmunologyInbred NOD MiceIndividualInfiltrationInflammatoryInsulinInsulin-Dependent Diabetes MellitusIslet CellIslets of LangerhansLearningLeukocytesMHC Class I GenesMediatingMetabolicMicrofluidicsModelingMolecularNutrientOrganOrganoidsOxygenPancreasPathologyPatientsPenetrationPhasePhysiologicalPhysiologyPlayPre-Clinical ModelProcessRodentRodent ModelRoleStimulusStromal CellsSystemT-LymphocyteTestingTissue EngineeringTissuesTreatment EfficacyUnited States National Institutes of HealthVascular SystemWorkautoreactive T cellbasecell killingcytokinediabetes pathogenesisdrug discoverydrug testingefficacy testinghuman diseasehuman modelin vitro Modelin vivoinduced pluripotent stem cellinsulitisisletmicrophysiology systemmigrationmouse modelnovel therapeuticsreal-time imagesresponsesensorstem cell differentiationstressor
项目摘要
PROJECT SUMMARY/ABSTRACT
Type 1 diabetes (T1D) is an autoimmune disease thought to be caused by immune-mediated destruction of the
insulin-producing β-cells in the pancreatic islets. Studying the mechanisms that underlie β-cell destruction in
humans with T1D has been challenging because most of the important immunological events occur before
diagnosis. Furthermore, while rodent models have been informative in defining some aspects of T1D etiology,
there are fundamental differences between the rodent and human pancreas with respect to islet architecture and
vasculature, as well as between rodent and human immune systems. Additionally, important aspects of human
T1D pathology are not replicated in the rodent models. Therefore, to fully understand human T1D
pathophysiology, it is critical to develop a human model, where the interactions of all cells involved in the disease
process (e.g. β-cells, endothelial cells (EC), innate and adaptive immune cells) can be studied in the context of
normal islet architecture, including vasculature, stromal cells, and native islet matrix. Over the past three years
through the NIH “Consortium on Human Islet Biomimetics”, our team (co-PI Sander: human induced pluripotent
stem cells (hiPSC) and diabetes; co-PI Hughes: vascular biology and bioengineering; co-I Christman
biomaterials and tissue engineering; co-I George microfluidics and transport) has developed a microfluidic-based
platform in which primary human islets or hiPSC-derived islet-like clusters are supported by a network of perfused
human microvessels. Our 3D vascularized islet micro-organ (VMO-I) platform allows for physiologic,
microvessel-mediated delivery of nutrients, disease-relevant stimuli, or immune cells to the islets. We propose
to leverage the unique features of our VMO-I platform to model the cell-cell interactions that occur in the islet
niche during T1D pathogenesis, namely immune cell extravasation, tissue penetration, and migration as well as
β-cell killing. For these studies co-I Teyton will provide expertise in T1D immunology. We propose to employ two
distinct in vitro models: The first, developed in the UG3 phase, is non-autologous and comprised of primary
human islets and vasculature from primary EC. Here, we will introduce either allogeneic lymphocytes (Aim G1)
or islet donor-matched β-cell-reactive T cell clones (Aim G2) to establish parameters for modeling T cell
extravasation and T cell-mediated β-cell killing. We will also work towards the goal of generating a VMO-I model
entirely derived from hiPSC (Aim G3). The second model, developed in the UH3 phase, will be fully autologous,
comprising β-cells, vasculature, and stromal cells derived from T1D patient hiPSC, which will be combined with
autoreactive T cells isolated from blood of the same patient. By combining live-sensors and real-time imaging
with molecular and biochemical assays, we will use these models to study how cells in the islet respond to T1D-
relevant stressors, such as pro-inflammatory cytokines, hyperglycemia, and hypoxia, how immune cells and β-
cells interact, and how β-cells are killed. Finally, we will demonstrate that the platform can be used to assess
candidate therapies for efficacy with the long-term goal to utilize the platform to screen for new therapeutics.
项目总结/摘要
1型糖尿病(T1 D)是一种自身免疫性疾病,被认为是由免疫介导的对糖尿病细胞的破坏引起的。
胰岛中产生胰岛素的β细胞。研究β细胞破坏的机制,
患有T1 D的人一直具有挑战性,因为大多数重要的免疫学事件发生在
诊断.此外,虽然啮齿动物模型在定义T1 D病因学的某些方面提供了信息,
啮齿动物和人类胰腺在胰岛结构方面存在根本差异,
血管,以及啮齿动物和人类免疫系统之间。此外,人的重要方面
T1 D病理学在啮齿动物模型中未复制。因此,为了充分了解人类T1 D
在病理生理学中,开发一个人类模型至关重要,在这个模型中,参与疾病的所有细胞的相互作用
过程(例如,β细胞、内皮细胞(EC)、先天性和适应性免疫细胞)可以在以下背景下进行研究:
正常的胰岛结构,包括脉管系统、基质细胞和天然胰岛基质。过去三年
通过NIH“人类胰岛仿生学联盟”,我们的团队(共同PI桑德:人类诱导多能
干细胞(hiPSC)和糖尿病;共同PI休斯:血管生物学和生物工程学;共同I Christman
生物材料和组织工程; co-I乔治微流体和运输)已经开发了一种基于微流体的
一个平台,其中原代人胰岛或hiPSC衍生的胰岛样簇由灌注的胰岛细胞网络支持,
人体微血管我们的3D血管化胰岛微器官(VMO-I)平台允许生理,
微血管介导的营养物、疾病相关刺激物或免疫细胞向胰岛的递送。我们提出
利用我们的VMO-I平台的独特功能来模拟胰岛中发生的细胞间相互作用,
在T1 D发病过程中的小生境,即免疫细胞外渗,组织渗透和迁移,以及
β-细胞杀伤。对于这些研究,Co-I Teyton将提供T1 D免疫学方面的专业知识。我们建议雇用两名
不同的体外模型:第一个是在UG 3阶段开发的,是非自体的,由原发性
从原代EC获得人胰岛和脉管系统。在这里,我们将介绍同种异体淋巴细胞(Aim G1)
或胰岛供体匹配的β细胞反应性T细胞克隆(Aim G2),以建立用于T细胞模型化的参数。
外渗和T细胞介导的β细胞杀伤。我们还将努力实现生成VMO-I模型的目标
完全源自hiPSC(Aim G3)。第二个模型是在UH 3阶段开发的,将是完全自体的,
包含源自T1 D患者hiPSC的β细胞、脉管系统和基质细胞,其将与
从同一患者的血液中分离的自身反应性T细胞。通过结合实时传感器和实时成像
通过分子和生化分析,我们将使用这些模型来研究胰岛细胞如何对T1 D做出反应,
相关的应激源,如促炎细胞因子、高血糖和缺氧,免疫细胞和β-
细胞相互作用,以及β细胞如何被杀死。最后,我们将证明该平台可用于评估
候选疗法的有效性,长期目标是利用该平台筛选新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER C. W. HUGHES其他文献
CHRISTOPHER C. W. HUGHES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER C. W. HUGHES', 18)}}的其他基金
In search of synergistic drug interactions in cancer
寻找癌症中的协同药物相互作用
- 批准号:
10651215 - 财政年份:2023
- 资助金额:
$ 100.98万 - 项目类别:
A Vascularized Micro-Organ platform for the study of Brain-BBB-Blood interaction
用于研究脑-血脑屏障-血液相互作用的血管化微器官平台
- 批准号:
10512822 - 财政年份:2020
- 资助金额:
$ 100.98万 - 项目类别:
A Vascularized Micro-Organ platform for the study of Brain-BBB-Blood interaction
用于研究脑-血脑屏障-血液相互作用的血管化微器官平台
- 批准号:
10252930 - 财政年份:2020
- 资助金额:
$ 100.98万 - 项目类别:
A Vascularized Micro-Organ platform for the study of Brain-BBB-Blood interaction
用于研究脑-血脑屏障-血液相互作用的血管化微器官平台
- 批准号:
10701037 - 财政年份:2020
- 资助金额:
$ 100.98万 - 项目类别:
A Vascularized Micro-Organ platform for the study of Brain-BBB-Blood interaction
用于研究脑-血脑屏障-血液相互作用的血管化微器官平台
- 批准号:
10064588 - 财政年份:2020
- 资助金额:
$ 100.98万 - 项目类别:
A 3D vascularized islet biomimetic to model type 1 diabetes
用于 1 型糖尿病模型的 3D 血管化胰岛仿生模型
- 批准号:
10665034 - 财政年份:2019
- 资助金额:
$ 100.98万 - 项目类别:
A 3D vascularized islet biomimetic to model type 1 diabetes
用于 1 型糖尿病模型的 3D 血管化胰岛仿生模型
- 批准号:
10449953 - 财政年份:2019
- 资助金额:
$ 100.98万 - 项目类别:
MIcrophysiological systems to model vascular malformations
模拟血管畸形的微生理系统
- 批准号:
10178473 - 财政年份:2017
- 资助金额:
$ 100.98万 - 项目类别:
Microphysiological systems to model vascular malformations
模拟血管畸形的微生理系统
- 批准号:
9788662 - 财政年份:2017
- 资助金额:
$ 100.98万 - 项目类别:
Microphysiological systems to model vascular malformations
模拟血管畸形的微生理系统
- 批准号:
9401128 - 财政年份:2017
- 资助金额:
$ 100.98万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 100.98万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 100.98万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 100.98万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 100.98万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 100.98万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 100.98万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 100.98万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 100.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 100.98万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 100.98万 - 项目类别:














{{item.name}}会员




