Engineering a Human Microphysiological System for the Characterization of Islet-Immune Interactions
设计人体微生理系统来表征胰岛免疫相互作用
基本信息
- 批准号:10467062
- 负责人:
- 金额:$ 100.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAntigensBeta CellBiologicalBiological AssayBiological ModelsCD8-Positive T-LymphocytesCell Culture TechniquesCell LineCell physiologyCell surfaceCellsCellular StressClinicalClinical TrialsCommunitiesComplexCytotoxic T-LymphocytesDefectDendritic CellsDevelopmentDevicesDiseaseDrug TargetingElementsEndocrineEndothelial CellsEndotheliumEngineeringExtracellular MatrixExtravasationFemaleFoundationsFrequenciesFunctional disorderG6PC2 geneGene TransferGenerationsGenesGeneticGenetic RiskGenotypeHomingHumanHydrogelsImmuneImmunomodulatorsIn SituIn VitroInsulinInsulin-Dependent Diabetes MellitusIntegrinsInterruptionInterventionIslet CellIslets of LangerhansKnowledgeLeadLiquid substanceLymphaticMeasurementMediatingMethodsModelingOutputPancreasPathogenesisPathologicPharmaceutical PreparationsPhasePhenotypeProtocols documentationRegulatory T-LymphocyteResearch PersonnelResourcesSamplingSourceStructure of beta Cell of isletSystemT-LymphocyteTechnologyTestingTherapeutic InterventionTimeTissuesVariantVisualizationacquired factorantigen testantigen-specific T cellsbasecell killingcell motilitycell typeclinical materialcytotoxic CD8 T cellsdiabetes pathogenesisdiabetes riskengineering designgenetic variantgenome editinggenome wide association studygraft vs host diseasehigh resolution imaginghumanized mouseimmunomodulatory therapiesimmunoregulationin vivo evaluationinduced pluripotent stem cellinnovationisletmacrophagemalemicrophysiology systemmonolayermouse modelnovelpreventrepositoryrisk mitigationrisk variantscreeningsensortrafficking
项目摘要
Summary
Three dimensional (3D) microphysiological systems (MPS) represent a powerful intermediate model system
employing human cells and tissues capable of bridging in vitro studies and clinical trials. We propose to create
an integrated MPS platform to more accurately model the complex cellular interactions involved in human type
1 diabetes (T1D) pathogenesis. We previously generated an MPS containing novel extracellular matrix
hydrogels that support sustained islet function and T cell migration along the islet cell surface in 3D (CHIB),
and in first-of-their-kind studies, we demonstrated antigen-specific IGRP-reactive human CD8 T cells resulted
in targeted β-cell killing (CMAI). Here, we propose an interdisciplinary effort to integrate and expand the MPS
platform (referred to as the islet-immune Chip (iiChip)), as well as the cell-based technologies facilitating
testing of antigen-specific T cells, isogenic cellular systems capable of deriving multiple cellular lineages, and
genome editing technologies for use by the broader HIRN community. Specifically, we will utilize islets or islet-
like spheroids, endothelial cell monolayers, and innate and adaptive immune cells, including dendritic cells
(DCs), macrophages, CD4+ conventional T cells (Tconv), CD8+ cytotoxic T cells (CTLs), and regulatory T cells
(Tregs), to model the spatial configuration and complex cellular interactions involved in human T1D
pathogenesis. We hypothesize that this optimized 3D iiChip will facilitate in situ interrogation of Ag-
specific and genotype-phenotype interactions that are essential in T1D pathogenesis as well as the
mechanistic effects of immunomodulatory therapies with spatial and temporal control. Experimental
deliverables will include the ability to assess islet:immune interactions utilizing real-time high-resolution
imaging and quantitation of cellular interactions, trafficking, extravasation, and β-cell function/survival. Key
features of the iiChip will involve the integration of in-line sensors and bioreporters, spatial and temporal control
of inputs for defined stimulation, and integration of matrices with the capacity for fluidic and cellular
recirculation, measurement of soluble and cellular readouts in long-term cell culture. In addition, gene edited
induced pluripotent stem cells (iPSC) from male and female donors with T1D-risk associated HLA will be
available for the generation of immune, endothelial, and endocrine cells that are essential for building an
isogenic “disease-on-a-chip” model. When loaded with primary human cells or isogenic iPSC-derived materials
(i.e., endothelial, immune, and β-cells), this iiCHIP will enable dynamic interrogation of genotype-phenotype
interactions, antigen-specific β-cell killing, and effects of immunomodulatory therapies within a fluidic 3D
microenvironment. The iiChip will enable mechanistic studies capable of expediting clinical interventions aimed
at inhibition of immune-mediated β-cell destruction, enhancing immune regulation, and testing of β-cell
restorative therapies.
总结
三维(3D)微生理系统(MPS)代表了一个强大的中间模型系统
使用能够桥接体外研究和临床试验的人细胞和组织。我们建议开设
一个集成的MPS平台,可以更准确地模拟人体类型中涉及的复杂细胞相互作用,
1型糖尿病(T1 D)发病机制。我们先前产生了含有新型细胞外基质的MPS
支持持续的胰岛功能和T细胞沿着胰岛细胞表面在3D(CHIB)中迁移的水凝胶,
在首次的研究中,我们证明了抗原特异性IGRP反应性人CD 8 T细胞的产生,
靶向β细胞杀伤(CMAI)。在这里,我们提出了一个跨学科的努力,整合和扩大MPS
平台(称为胰岛免疫芯片(iiChip)),以及基于细胞的技术,
测试抗原特异性T细胞,能够衍生多种细胞谱系的同基因细胞系统,和
基因组编辑技术,供更广泛的HIRN社区使用。具体来说,我们将利用胰岛或胰岛-
如球状体、内皮细胞单层以及先天性和适应性免疫细胞,包括树突状细胞
(DCs)、巨噬细胞、CD 4+常规T细胞(Tconv)、CD 8+细胞毒性T细胞(CTL)和调节性T细胞
(TlD),以模拟人类T1 D中涉及的空间构型和复杂的细胞相互作用。
发病机制我们假设这种优化的3D iiChip将有助于原位询问Ag-
特异性和基因型-表型相互作用在T1 D发病机制中至关重要,
具有空间和时间控制的免疫调节疗法的机制作用。实验
可交付成果将包括利用实时高分辨率评估胰岛:免疫相互作用的能力
细胞相互作用、运输、外渗和β细胞功能/存活的成像和定量。关键
iiChip的特点将包括集成在线传感器和生物报告器,空间和时间控制
用于确定刺激的输入,以及具有流体和细胞的能力的基质的整合
再循环,测量长期细胞培养中的可溶性和细胞读数。此外,基因编辑
来自具有T1 D风险相关HLA的男性和女性供体的诱导多能干细胞(iPSC)将被
可用于产生免疫,内皮和内分泌细胞,这些细胞对于建立一个
同基因“芯片上的疾病”模型。当装载原代人细胞或等基因iPSC衍生材料时
(i.e.,内皮、免疫和β细胞),这种iiCHIP将能够动态询问基因型-表型
流体3D内的相互作用、抗原特异性β细胞杀伤和免疫调节治疗的效果
微环境。iiChip将使机制研究能够加速临床干预,
在抑制免疫介导的β细胞破坏,增强免疫调节和检测β细胞
恢复性治疗
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashutosh Agarwal其他文献
Ashutosh Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashutosh Agarwal', 18)}}的其他基金
Engineering a Human Microphysiological System for the Characterization of Islet-Immune Interactions
设计人体微生理系统来表征胰岛免疫相互作用
- 批准号:
10665727 - 财政年份:2019
- 资助金额:
$ 100.79万 - 项目类别:
Engineering a Human Microphysiological System for the Characterization of Islet-Immune Interactions
设计人体微生理系统来表征胰岛免疫相互作用
- 批准号:
10453211 - 财政年份:2019
- 资助金额:
$ 100.79万 - 项目类别:
A comprehensive liquid biopsy platform for detection and prognostication in early stage breast cancer
用于早期乳腺癌检测和预测的综合液体活检平台
- 批准号:
10458490 - 财政年份:2018
- 资助金额:
$ 100.79万 - 项目类别:
A comprehensive liquid biopsy platform for detection and prognostication in early stage breast cancer
用于早期乳腺癌检测和预测的综合液体活检平台
- 批准号:
10001470 - 财政年份:2018
- 资助金额:
$ 100.79万 - 项目类别:
A comprehensive liquid biopsy platform for detection and prognostication in early stage breast cancer
用于早期乳腺癌检测和预测的综合液体活检平台
- 批准号:
10216201 - 财政年份:2018
- 资助金额:
$ 100.79万 - 项目类别:
A comprehensive liquid biopsy platform for detection and prognostication in early stage breast cancer
用于早期乳腺癌检测和预测的综合液体活检平台
- 批准号:
9631128 - 财政年份:2018
- 资助金额:
$ 100.79万 - 项目类别:
Engineering a Human Physiomimetic Islet Microsystem
设计人体拟态胰岛微系统
- 批准号:
8813808 - 财政年份:2014
- 资助金额:
$ 100.79万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 100.79万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 100.79万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 100.79万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 100.79万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 100.79万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 100.79万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 100.79万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 100.79万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 100.79万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 100.79万 - 项目类别:
Research Grant