Defining Genome Stability Mechanisms and their Regulation by SUMO and Ubiquitin
SUMO 和泛素定义基因组稳定性机制及其调控
基本信息
- 批准号:10468755
- 负责人:
- 金额:$ 67.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Arsenic TrioxideBindingBiochemicalBiologicalCRISPR/Cas technologyCell SurvivalCellsChromatinComplexDNA DamageDNA RepairDNA Repair GeneDNA biosynthesisDNA lesionDataDefectDiseaseEnvironmentEyeGeneticGenome StabilityGoalsHealthHomeostasisKnowledgeLabelMalignant NeoplasmsMapsMediatingMediator of activation proteinMutationNuclearPathway interactionsPhasePlayProcessProteinsProteomeProteomicsRegulationResearchRoleSignal TransductionSiteTelomere PathwayTherapeuticTherapeutic EffectTherapeutic InterventionToxic effectUbiquitinVirus Replicationbiophysical techniquescofactorcohesincombatcondensingenetic manipulationgenome integritygenotoxicityinsightleukemianovelrecruitrepairedresponsespatiotemporalsynergismtelomereubiquitin-protein ligase
项目摘要
Maintaining genetic integrity is crucial for cell viability and disease suppression. Consequently, cellular
machinery such as the DNA damage response (DDR) has evolved to combat continual genotoxic insults.
Whilst specific DNA repair mechanisms have been defined in great detail, understanding the spatiotemporal
regulation of DDR factors in the cell remains a key challenge. Here, the covalent postranslational modifiers
(PTMs) SUMO and ubiquitin play critical roles, both recruiting DDR proteins to DNA lesions, and then removing
them as necessary to promote repair. Indeed, defects in the SUMO and ubiquitin pathways cause failed DDR
orchestration, severe genetic instability, and disease. Therefore, the overarching goal of our research is to
delineate SUMO and ubiquitin mediated mechanisms that maintain genome integrity, with an eye to identifying
and exploiting potential therapeutic avenues. Our proposal centers on two factors, STUbL and SMC5/6, which
integrate signaling through SUMO and ubiquitin to support key health-related processes. Of note, STUbL
mediates the therapeutic effects of arsenic trioxide in leukemia, and SMC5/6 mutations cause severe disease.
STUbL is an E3 ubiquitin ligase that selectively recognizes and ubiquitinates SUMOylated proteins to promote
their degradation and/or extraction from chromatin. SMC5/6 is functionally related to cohesin and condensin
but uniquely, can modify targets with SUMO and ubiquitin. To provide functional insights, we used proximity
labeling to reliably map the proteomic environments of STUbL and SMC5/6 in key health-related settings such
as: dysfunctional telomeres, DNA repair, and viral replication. Surprisingly, considerable overlap was identified
between each proteome, creating further synergy and efficiency in our research. For example, the functions
and targets of SMC5/6 and STUbL intersect in the “alternative lengthening of telomeres” (ALT) pathway used
in ~15% of cancers. Thus, we would define STUbL and SMC5/6 roles in the elongation and “trimming” of
telomeres through the novel ALT-specific targets and cofactors we identified. In addition, a wealth of recent
data supports our hypothesis that STUbL controls SUMO pathway homeostasis, as well as specific targets, to
support genome stability, DNA replication, and cell survival. Further analysis using genetic manipulation of the
SUMO pathway (e.g. CRISPR/Cas9), mediators of SUMO chain toxicity, and new STUbL targets would
establish this key paradigm in SUMO and ubiquitin pathway crosstalk. We also recently identified an SMC5/6
cofactor that binds SUMO and directs the complex to phase-separated ALT PML nuclear bodies, sites of viral
replication, and likely DNA lesions, thereby unifying these seemingly disparate processes. Hence, we would
define functions for SMC5/6 and its new SUMO binding cofactor in each of these processes to reveal common
mechanisms. Overall, our collaborative teams' analysis of STUbL and SMC5/6 using proteomic, genetic, cell
biological, biochemical, and biophysical methods would synergize to define key health-related mechanisms at
the nexus of the SUMO and ubiquitin pathways; providing targets and guidance for therapeutic interventions.
保持遗传完整性对细胞活力和疾病抑制至关重要。因此,Cellular
诸如DNA损伤反应(DDR)的机制已经进化以对抗持续的遗传毒性损伤。
虽然已经非常详细地定义了特定的DNA修复机制,但理解时空
细胞中DDR因子的调节仍然是一个关键挑战。在这里,共价翻译后修饰语
(PTM)SUMO和泛素起着关键作用,都招募DDR蛋白到DNA损伤,然后去除
这是必要的,以促进修复。事实上,SUMO和泛素途径的缺陷导致DDR失败
协调,严重的遗传不稳定性和疾病。因此,我们研究的首要目标是
描述SUMO和泛素介导的维持基因组完整性的机制,着眼于识别
探索潜在的治疗途径我们的建议集中在两个因素,STUbL和SMC 5/6,
通过SUMO和泛素整合信号传导,以支持关键健康相关过程。注意,STUBL
介导三氧化二砷在白血病中的治疗作用,SMC 5/6突变导致严重疾病。
STUbL是一种E3泛素连接酶,其选择性识别并泛素化SUMO化蛋白,以促进
它们的降解和/或从染色质中提取。SMC 5/6与cohesin和condensin功能相关
但独特地,可以用SUMO和泛素修饰靶。为了提供功能性的见解,我们使用了接近性
标记以可靠地映射STUbL和SMC 5/6在关键健康相关环境中的蛋白质组环境,
例如:端粒功能障碍、DNA修复和病毒复制。令人惊讶的是,发现了相当多的重叠
在每个蛋白质组之间,在我们的研究中创造进一步的协同作用和效率。例如,函数
SMC 5/6和STUbL的靶点在所用的“端粒交替延长”(ALT)途径中相交,
约15%的癌症。因此,我们将定义STUbL和SMC 5/6在细胞的伸长和“修剪”中的作用。
端粒通过新的ALT特异性目标和辅因子,我们确定。此外,最近大量
数据支持我们的假设,即STUbL控制SUMO通路的稳态,以及特定的靶点,
支持基因组稳定性、DNA复制和细胞存活。进一步分析使用基因操作的
SUMO通路(例如CRISPR/Cas9)、SUMO链毒性的介导物和新的STUbL靶点将被发现。
在SUMO和泛素途径串扰中建立了这个关键范例。我们最近还确定了一个SMC 5/6
一种结合SUMO并将复合物导向相分离的ALT PML核体的辅因子,
复制和可能的DNA损伤,从而统一这些看似不同的过程。因此,我们将
定义SMC 5/6及其新的SUMO结合辅因子在这些过程中的功能,以揭示共同的
机制等总的来说,我们的合作团队使用蛋白质组学、遗传学、细胞学和生物学方法对STUbL和SMC 5/6进行的分析,
生物学、生物化学和生物物理学方法将协同作用,确定关键的健康相关机制,
SUMO和泛素途径的联系;为治疗干预提供靶点和指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL N BODDY其他文献
MICHAEL N BODDY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL N BODDY', 18)}}的其他基金
Defining Genome Stability Mechanisms and their Regulation by SUMO and Ubiquitin
SUMO 和泛素定义基因组稳定性机制及其调控
- 批准号:
10241241 - 财政年份:2020
- 资助金额:
$ 67.45万 - 项目类别:
Defining Genome Stability Mechanisms and their Regulation by SUMO and Ubiquitin
SUMO 和泛素定义基因组稳定性机制及其调控
- 批准号:
10687242 - 财政年份:2020
- 资助金额:
$ 67.45万 - 项目类别:
SUMO-dependent Regulation of Ubiquitin Ligases in Genomic Stability
基因组稳定性中泛素连接酶的 SUMO 依赖性调节
- 批准号:
7753884 - 财政年份:2009
- 资助金额:
$ 67.45万 - 项目类别:
SUMO-dependent Regulation of Ubiquitin Ligases in Genomic Stability
基因组稳定性中泛素连接酶的 SUMO 依赖性调节
- 批准号:
8996575 - 财政年份:2009
- 资助金额:
$ 67.45万 - 项目类别:
SUMO-dependent Regulation of Ubiquitin Ligases in Genomic Stability
基因组稳定性中泛素连接酶的 SUMO 依赖性调节
- 批准号:
8024521 - 财政年份:2009
- 资助金额:
$ 67.45万 - 项目类别:
SUMO-dependent Regulation of Ubiquitin Ligases in Genomic Stability
基因组稳定性中泛素连接酶的 SUMO 依赖性调节
- 批准号:
8206797 - 财政年份:2009
- 资助金额:
$ 67.45万 - 项目类别:
SUMO-BINDING MOTIFS MEDIATE THE RAD60-DEPENDENT RESPONSE
SUMO 结合基序调节 RAD60 依赖性反应
- 批准号:
7602145 - 财政年份:2007
- 资助金额:
$ 67.45万 - 项目类别:
NOVEL ESSENTIAL DNA REPAIR PROTEINS NSE1 AND NSE2 ARE SUBUNITS OF THE FISSION Y
新型必需 DNA 修复蛋白 NSE1 和 NSE2 是裂变 Y 的亚基
- 批准号:
7420711 - 财政年份:2006
- 资助金额:
$ 67.45万 - 项目类别:
NOVEL ESSENTIAL DNA REPAIR PROTEINS NSE1 AND NSE2 ARE SUBUNITS OF THE FISSION Y
新型必需 DNA 修复蛋白 NSE1 和 NSE2 是裂变 Y 的亚基
- 批准号:
7182424 - 财政年份:2005
- 资助金额:
$ 67.45万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Biochemical characterization of an inflammation related protein, mTOC (Celastramycin binding protein)
炎症相关蛋白 mTOC(西拉霉素结合蛋白)的生化特征
- 批准号:
17K07346 - 财政年份:2017
- 资助金额:
$ 67.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of the impact of Arginine Methylation of RNA Binding Proteins on Their Biochemical
RNA 结合蛋白精氨酸甲基化对其生化影响的表征
- 批准号:
511321-2017 - 财政年份:2017
- 资助金额:
$ 67.45万 - 项目类别:
University Undergraduate Student Research Awards
Biochemical & Genetic Analysis of Low Complexity Domains in RNA-binding protein biology
生化
- 批准号:
9335978 - 财政年份:2016
- 资助金额:
$ 67.45万 - 项目类别:
Biochemical & Genetic Analysis of Low Complexity Domains in RNA-binding protein biology
生化
- 批准号:
9158657 - 财政年份:2016
- 资助金额:
$ 67.45万 - 项目类别:
EAGER: Biochemical Mechanism of Oomycete RXLR Effector Binding to PI3P
EAGER:卵菌 RXLR 效应子与 PI3P 结合的生化机制
- 批准号:
1449122 - 财政年份:2014
- 资助金额:
$ 67.45万 - 项目类别:
Standard Grant
Biochemical analysis of plant calcium-binding proteins
植物钙结合蛋白的生化分析
- 批准号:
448832-2013 - 财政年份:2013
- 资助金额:
$ 67.45万 - 项目类别:
University Undergraduate Student Research Awards
Genetic and biochemical analysis of the CaMK family of calmodulin-binding kinases in root and nodule function of Glycine max and Medicago truncatula
钙调蛋白结合激酶 CaMK 家族在大豆和蒺藜苜蓿根和根瘤功能中的遗传和生化分析
- 批准号:
409766-2011 - 财政年份:2013
- 资助金额:
$ 67.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Genetic and biochemical analysis of the CaMK family of calmodulin-binding kinases in root and nodule function of Glycine max and Medicago truncatula
钙调蛋白结合激酶 CaMK 家族在大豆和蒺藜苜蓿根和根瘤功能中的遗传和生化分析
- 批准号:
409766-2011 - 财政年份:2012
- 资助金额:
$ 67.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Biochemical, cellular and molecular studies to dissect the contribution of the soluble host carbohydrate binding proteins to HIV-1 pathogenesis
生化、细胞和分子研究,剖析可溶性宿主碳水化合物结合蛋白对 HIV-1 发病机制的贡献
- 批准号:
239201 - 财政年份:2011
- 资助金额:
$ 67.45万 - 项目类别:
Operating Grants
Genetic and biochemical analysis of the CaMK family of calmodulin-binding kinases in root and nodule function of Glycine max and Medicago truncatula
钙调蛋白结合激酶 CaMK 家族在大豆和蒺藜苜蓿根和根瘤功能中的遗传和生化分析
- 批准号:
409766-2011 - 财政年份:2011
- 资助金额:
$ 67.45万 - 项目类别:
Postgraduate Scholarships - Doctoral