Neural circuits underlying thirst and satiety regulation
口渴和饱腹感调节的神经回路
基本信息
- 批准号:10468173
- 负责人:
- 金额:$ 38.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimalsAppetite RegulationArchitectureAreaAtlasesAutomobile DrivingBehaviorBehavioralBody FluidsBody WaterBrainBrain regionCell NucleusConsummatory BehaviorConsumptionDataDehydrationDesire for foodElderlyElectrophysiology (science)EnvironmentEquilibriumFeedbackFeeding behaviorsFiberFluid BalanceGastrointestinal tract structureGenesGeneticGenetic TranscriptionGoalsHomeostasisImageIndividualInfusion proceduresIngestionKnowledgeLabelLamina TerminalisLightLinkLiquid substanceLogicMediatingModelingMolecularMotivationMusNeuronsNutrientOpticsOrganOsmolalitiesOutcomePathway interactionsPhotometryPhysiologicalPlayPolydipsiaPopulationProcessProsencephalonPublic HealthRecoveryRegulationResearchRewardsRoleSatiationSensorySignal PathwaySignal TransductionStimulusStructureSubfornical OrganSymptomsTestingThirstTimeViralWaterWater consumptionabsorptionalcohol use initiationawakebasecell typedrinkingdrinking behaviorgastrointestinalin vivoinnovationinsightloss of functionneural circuitrelating to nervous systemsingle-cell RNA sequencingthirst regulationtooltranscriptomics
项目摘要
Project Summary
A forebrain structure, lamina terminalis (LT), plays a key role in both sensing internal water balance and
regulating thirst through its downstream neural circuits. Recent studies have identified genetically-defined
neural populations and circuit organization that control the initiation of drinking. The activity of these thirst
neurons are rapidly suppressed with the onset of water consumption prior to absorption of ingested water.
These results suggest that the LT integrates the homeostatic need and real-time satiety signals to optimize
drinking. However, little is known about the functional significance of such integration and the underlying neural
circuits. These studies have been hindered by the anatomical complexity of the LT and the lack of genetic
handle on related neural circuits. Recent technological advances in transcriptomic analysis and neural
manipulation/mapping tools have opened up an exciting window to study neural circuit at cell-type-specific
precision. The present study combines such advanced approaches to delineate the cellular organization of the
LT and the neural circuitry underlying rapid thirst satiety. These studies build on our results that thirst neurons
in the subfornical organ (SFO) receive multiple satiety signals through anatomically and temporally separable
neural substrates. In Aim 1, we will employ high-throughput single-cell RNA-seq analysis to elucidate a
transcriptomic atlas of individual nuclei of the LT. This study will provide a framework to link individual
physiological functions of the LT with molecularly-defined cell types. Based on our results, we will examine
whether thirst neurons comprise functionally distinct multiple subpopulations in the LT. In Aim 2, we will
characterize two temporally distinct satiety signals in the SFO induced by drinking action and osmolality
change by water intake. We will determine the signaling pathways that carry individual thirst satiety signals
using intragustric fluid infusion and in vivo optical recording from the SFO in awake-behaving animals. In Aim
3, we will define the neural substrates and circuits that mediate osmolality-induced satiety by retrograde viral
tracing and electrophysiological tools. Once we identify candidate brain areas, we will apply an innovative
“monosynaptic” scRNA-seq analysis to identify specific genes enriched in the neurons that transmit the
osmolality signal to the SFO. The outcome of this project will advance our understanding of neural basis of
thirst and satiety regulation.
项目摘要
前脑结构,终板(LT),在感知内部水平衡和
通过下游的神经回路调节口渴。最近的研究发现,
控制饮酒开始的神经群和回路组织。这些干渴的活动
神经元在吸收摄入的水之前随着水消耗的开始而被迅速抑制。
这些结果表明,LT整合了稳态需求和实时饱腹感信号,以优化
喝酒然而,很少有人知道这种整合的功能意义和潜在的神经系统。
电路.这些研究受到LT解剖学复杂性和缺乏遗传学基础的阻碍。
处理相关的神经回路转录组学分析和神经系统疾病的最新技术进展
操纵/映射工具为研究细胞类型特异性的神经回路开辟了一个令人兴奋的窗口。
精度本研究结合了这些先进的方法来描绘细胞组织的
LT和快速口渴饱腹感的神经回路。这些研究建立在我们的结果之上,
在穹窿下器官(SFO)中,通过解剖学上和时间上可分离的方式接收多个饱腹感信号
神经基质在目标1中,我们将采用高通量单细胞RNA-seq分析来阐明
本研究将提供一个框架,以联系个人的LT核转录组图谱。
LT的生理功能与分子定义的细胞类型。根据我们的结果,我们将检查
口渴神经元是否包括LT中功能不同的多个亚群。在目标2中,我们将
描述了两个时间上不同的饱足信号在SFO诱导的饮用行动和渗透压
改变水的摄入。我们将确定携带个体口渴饱足信号的信号通路
在清醒的动物中使用胃内液体输注和来自SFO的体内光学记录。在Aim中
3,我们将确定通过逆行病毒介导渗透压诱导的饱腹感的神经基质和回路,
追踪和电生理工具。一旦我们确定了候选的大脑区域,我们将应用一种创新的
“单突触”scRNA-seq分析,以鉴定在传递突触的神经元中富集的特定基因。
向SFO发送渗透压摩尔浓度信号。该项目的成果将促进我们对神经基础的理解,
口渴和饱足调节。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Hierarchical neural architecture underlying thirst regulation.
- DOI:10.1038/nature25488
- 发表时间:2018-03-08
- 期刊:
- 影响因子:64.8
- 作者:Augustine V;Gokce SK;Lee S;Wang B;Davidson TJ;Reimann F;Gribble F;Deisseroth K;Lois C;Oka Y
- 通讯作者:Oka Y
Peripheral and Central Nutrient Sensing Underlying Appetite Regulation.
外围和中央营养感应的食欲调节。
- DOI:10.1016/j.tins.2018.05.003
- 发表时间:2018-08
- 期刊:
- 影响因子:15.9
- 作者:Augustine V;Gokce SK;Oka Y
- 通讯作者:Oka Y
The cellular basis of distinct thirst modalities.
- DOI:10.1038/s41586-020-2821-8
- 发表时间:2020-12
- 期刊:
- 影响因子:64.8
- 作者:Pool AH;Wang T;Stafford DA;Chance RK;Lee S;Ngai J;Oka Y
- 通讯作者:Oka Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuki Oka其他文献
Yuki Oka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuki Oka', 18)}}的其他基金
Dissecting sodium appetite circuits in the mammalian brain
剖析哺乳动物大脑中的钠食欲回路
- 批准号:
10685535 - 财政年份:2021
- 资助金额:
$ 38.53万 - 项目类别:
Dissecting sodium appetite circuits in the mammalian brain
剖析哺乳动物大脑中的钠食欲回路
- 批准号:
10458090 - 财政年份:2021
- 资助金额:
$ 38.53万 - 项目类别:
Dissecting sodium appetite circuits in the mammalian brain
剖析哺乳动物大脑中的钠食欲回路
- 批准号:
10300953 - 财政年份:2021
- 资助金额:
$ 38.53万 - 项目类别:
Neural circuits underlying thirst and satiety regulation
口渴和饱腹感调节的神经回路
- 批准号:
9792306 - 财政年份:2018
- 资助金额:
$ 38.53万 - 项目类别:
Neural circuits underlying thirst and satiety regulation
口渴和饱腹感调节的神经回路
- 批准号:
10240641 - 财政年份:2018
- 资助金额:
$ 38.53万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 38.53万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 38.53万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 38.53万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 38.53万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 38.53万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 38.53万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 38.53万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 38.53万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 38.53万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 38.53万 - 项目类别:
Training Grant














{{item.name}}会员




