Dissecting sodium appetite circuits in the mammalian brain
剖析哺乳动物大脑中的钠食欲回路
基本信息
- 批准号:10300953
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAldosteroneAnatomyAngiotensinsAnimalsAppetite RegulationAreaBehaviorBehavior ControlBiological ProcessBloodBrainCell NucleusCellsCognitiveConsumptionDesire for foodDietary SodiumElectrophysiology (science)EquilibriumFeeding behaviorsFunctional disorderGeneticGenetic MarkersGoalsHemostatic functionHomeostasisHungerIndividualIngestionIntakeIonsLamina TerminalisLogicMapsMediatingModelingMole the mammalMolecularMolecular GeneticsMusNegative ValenceNeural PathwaysNeuronsNeurosciencesNucleus solitariusOsmoregulationPathway interactionsPhysiologicalPilot ProjectsPopulationPopulation ControlPositive ValenceProcessProsencephalonPublic HealthPublishingRegulationResearchRisk FactorsRoleSaltsSignal TransductionSiteSodiumSodium ChlorideSynaptic TransmissionTechniquesTestingThirstVascular Cognitive ImpairmentViralVirusWaterWorkbasecardiovascular risk factorcell typecravingdesignexperimental studygain of functiongenetic informationhedonichindbraininsightlocus ceruleus structureloss of functionneural circuitoptogeneticspreferencerelating to nervous systemtooltranscriptomics
项目摘要
Project Summary
Internal sodium balance is critical for many physiological functions, including osmoregulation and action
potentials. Deciphering the mechanisms that control sodium intake is essential for understanding the
principles of appetite regulation and sodium homeostasis in the body. Our understanding of central
sodium appetite regulation is still lacking compared to other appetite circuits such as thirst and hunger. I
propose to study this fundamental brain circuit that controls our internal ion balance using transcriptomic
and molecular genetic tools. Our preliminary and published results have identified specific neural
populations in the mouse hindbrain and forebrain that acutely regulate sodium ingestion. However, it is
currently unknown how these distinct neural nodes contribute to sodium appetite. Our central hypothesis
is that distinct neural circuits regulate sodium appetite and tolerance. We will test this idea through three
specific aims. In Aim 1, we will use gain- and loss-of-function manipulations to examine if individual neural
populations control behavioral aversion and/or attraction toward sodium. This study is expected to identify
the functional roles of each genetically defined neural population in sodium ingestion. In Aim 2, we
propose to use genetics, virus tracing, and physiological recording to dissect the circuit organization
underlying sodium ingestion. Once the anatomical map is identified, we will use projection specific neural
perturbation to examine the function of the individual downstream regions. In Aim 3, we propose to
identify cell types from downstream areas of sodium appetite neurons. We will achieve this by combining
activity-dependent high-throughput single-cell transcriptomics and neural perturbation in the upstream
population. This approach is expected to dissect specific cell types that receive sodium appetite signals
from upstream neurons. We will then use genetic information of the identified downstream cell types to
examine how signals from distinct nuclei interact to drive sodium appetite. Together, this proposal will
provide critical insights into the brain-wide regulatory mechanisms underlying sodium ingestion.
项目摘要
体内钠平衡是许多生理功能的关键,包括渗透调节和作用。
潜力。破译控制钠摄入量的机制对于理解
食欲调节和体内钠平衡的原理。我们对中央的理解
与口渴和饥饿等其他食欲回路相比,钠的食欲调节仍然缺乏。我
建议使用转录切除法研究控制我们体内离子平衡的基本大脑回路
和分子遗传工具。我们的初步和已发表的结果已经确定了特定的神经
小鼠后脑和前脑中敏锐地调节钠摄入量的种群。然而,它是
目前尚不清楚这些不同的神经节如何促进钠的食欲。我们的中心假设
是独特的神经回路调节钠的食欲和耐受性。我们将通过三个方面来测试这个想法
明确的目标。在目标1中,我们将使用功能增益和功能损失操作来检查单个神经细胞
人群控制着对钠的行为厌恶和/或吸引。这项研究预计将确定
每个基因定义的神经细胞群在钠摄取中的功能作用。在目标2中,我们
建议使用遗传学、病毒追踪和生理记录来解剖电路组织
潜在的钠摄入量。一旦确定了解剖图,我们将使用投影特定的神经
扰动以检查各个下游区域的功能。在目标3中,我们建议
从钠摄取神经元的下游区域识别细胞类型。我们将通过以下方式实现这一点:
上游依赖活性的高通量单细胞转录和神经扰动
人口。这一方法有望剖析接收钠摄取信号的特定细胞类型。
来自上游神经元。然后,我们将使用已识别的下游细胞类型的遗传信息来
研究来自不同核的信号如何相互作用来驱动钠的胃口。总而言之,这项提议将
提供对钠摄取背后的全脑调节机制的关键见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuki Oka其他文献
Yuki Oka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuki Oka', 18)}}的其他基金
Dissecting sodium appetite circuits in the mammalian brain
剖析哺乳动物大脑中的钠食欲回路
- 批准号:
10685535 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Dissecting sodium appetite circuits in the mammalian brain
剖析哺乳动物大脑中的钠食欲回路
- 批准号:
10458090 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Neural circuits underlying thirst and satiety regulation
口渴和饱腹感调节的神经回路
- 批准号:
10468173 - 财政年份:2018
- 资助金额:
$ 41.88万 - 项目类别:
Neural circuits underlying thirst and satiety regulation
口渴和饱腹感调节的神经回路
- 批准号:
9792306 - 财政年份:2018
- 资助金额:
$ 41.88万 - 项目类别:
Neural circuits underlying thirst and satiety regulation
口渴和饱腹感调节的神经回路
- 批准号:
10240641 - 财政年份:2018
- 资助金额:
$ 41.88万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Operating Grants














{{item.name}}会员




