Differential function and tumor vulnerabilities revealed by RAS membrane trafficking

RAS 膜运输揭示的差异功能和肿瘤脆弱性

基本信息

项目摘要

Mutant RAS genes drive cancer more frequently than any other oncogene. Oncogenic RAS proteins transform cells only when associated with cellular membranes. Membrane association is mediated by post-translational modifications, including farnesylation, aaX proteolysis, carboxyl methylation, and palmitoylation. For more than two decades my laboratory has focused on the post-translational modification and membrane targeting of RAS and related small GTPases. We have made paradigm-shifting contributions to the field including the discovery that RAS traffics upon and signals from endomembranes as well as the plasma membrane (PM). These observations established the field of compartmentalized signaling of RAS. Early attempts to treat cancer with farnesyltransferase inhibitors (FTIs) failed in the clinic not because membrane association is dispensable for RAS function but rather because FTIs did not block membrane association. We have since sought more effective means of limiting membrane association of RAS. In recent work we have focused on KRAS and NRAS, the isoforms most often mutant in tumors. We have established phosphorylation of KRAS4B as a means of modulating membrane association and function, characterized the differential membrane trafficking of KRAS4A and KRAS4B, the two splice variants of the KRAS locus, developed quantitative assays for KRAS4B membrane association that were applied to genome-wide RNAi and CRISPR screens, and discovered differential effects of the two splice variants on tumor metabolism. Perhaps most remarkable is our recent discovery that hexokinase 1 (HK1), the enzyme that catalyzes the first committed step in glycolysis, is an effector of KRAS that is specific to the KRAS4A splice variant by virtue of its unique subcellular trafficking (in press in Nature). We have also discovered that NRAS is uniquely sensitive to inhibition of isoprenylcysteine carboxylmethytransferase (ICMT), the CaaX modifying enzyme we first identified. Over the seven years of funding that we seek through the R35 mechanism we propose to build on these discoveries. The overarching scientific question to be addressed is whether the differential modification and membrane trafficking of RAS proteins can reveal new therapeutic vulnerabilities. Specifically, we will a) characterize HK1 as an effector of KRAS4A and explore more broadly the differential effects on tumor metabolism driven by the two splice variants of the KRAS locus, b) pursue hits from a recent, innovative screen that revealed previously unappreciated genes, including several druggable protein kinases, that are required for efficient membrane association of KRAS4B, and c) determine if ICMT inhibition is viable approach to treating NRAS-driven melanoma. Our approach will be innovative, multidisciplinary, and collaborative. We have recruited experts to serve as collaborators in kinase biochemistry, super-resolution microscopy, structural biology, genome regulation, metabolomics, cancer genomics, single-cell transcriptomics, and rodent genetic engineering and imaging. We expect that the work proposed will lead to new insights into basic RAS biology and reveal vulnerabilities that can be exploited therapeutically.
突变的RAS基因比任何其他癌基因更频繁地驱动癌症。致癌RAS蛋白转化 细胞只有在与细胞膜结合时才能生长。膜结合是由翻译后 这些修饰包括法尼基化、aaX蛋白水解、羧基甲基化和棕榈酰化。有关详细 二十多年来,我的实验室一直专注于翻译后修饰和膜靶向, RAS和相关的小GTP酶。我们对该领域做出了范式转变的贡献,包括 发现RAS在内膜以及质膜(PM)上运输并从内膜和质膜发出信号。这些 这些观察建立了RAS的区室化信号传导领域。早期的癌症治疗尝试 法尼基转移酶抑制剂(FTIs)在临床上失败,不是因为膜结合对RAS不利 功能,而是因为FTIs不阻断膜缔合。从那时起,我们一直在寻求更有效的方法, 限制RAS膜结合的手段。在最近的工作中,我们集中在KRAS和NRAS上, 同种型在肿瘤中最常突变。我们已经建立了KRAS 4B的磷酸化作为一种手段, 调节膜缔合和功能,表征KRAS 4A的差异膜运输 和KRAS 4B(KRAS基因座的两种剪接变体)开发了KRAS 4B膜的定量分析 应用于全基因组RNAi和CRISPR筛选,并发现了 两种剪接变异体对肿瘤代谢的影响也许最值得注意的是我们最近发现己糖激酶 1(HK1),催化糖酵解中第一个关键步骤的酶,是KRAS的效应子, KRAS4A剪接变体凭借其独特的亚细胞运输(在自然界出版)。我们还 发现NRAS对异戊二烯基半胱氨酸羧基甲基转移酶(ICMT)的抑制是唯一敏感的, 我们首次发现的CaaX修饰酶在我们通过R35寻求的七年资金中, 我们建议建立在这些发现的基础上的机制。要解决的首要科学问题是 RAS蛋白的差异修饰和膜运输是否可以揭示新的治疗方法, 漏洞具体而言,我们将a)将HK1表征为KRAS 4A的效应子,并更广泛地探索 由KRAS基因座的两种剪接变体驱动的对肿瘤代谢的不同影响,B)追求命中 从最近的一项创新性筛选中发现了以前不受重视的基因, 蛋白激酶,其是KRAS 4B的有效膜结合所需的,和c)确定ICMT是否 抑制是治疗NRAS驱动黑色素瘤的可行方法。我们的方法将是创新的, 多学科,协作。我们已经招募了激酶生物化学方面的专家作为合作者, 超分辨率显微镜,结构生物学,基因组调控,代谢组学,癌症基因组学,单细胞 转录组学和啮齿动物基因工程和成像。我们期望拟议的工作将导致 新的见解基本RAS生物学和揭示漏洞,可以利用治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK Reid PHILIPS其他文献

MARK Reid PHILIPS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK Reid PHILIPS', 18)}}的其他基金

FASEB SRC: Structure and Function of Small GTPases
FASEB SRC:小 GTP 酶的结构和功能
  • 批准号:
    10463260
  • 财政年份:
    2022
  • 资助金额:
    $ 99.67万
  • 项目类别:
Medical Scientist Research Service Award
医学科学家研究服务奖
  • 批准号:
    10198956
  • 财政年份:
    2020
  • 资助金额:
    $ 99.67万
  • 项目类别:
Regulation of KRAS Trafficking and Signaling by GPR31
GPR31 对 KRAS 贩运和信号传输的监管
  • 批准号:
    10047185
  • 财政年份:
    2020
  • 资助金额:
    $ 99.67万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10688011
  • 财政年份:
    2020
  • 资助金额:
    $ 99.67万
  • 项目类别:
Medical Scientist Research Service Award
医学科学家研究服务奖
  • 批准号:
    10417095
  • 财政年份:
    2020
  • 资助金额:
    $ 99.67万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10237382
  • 财政年份:
    2020
  • 资助金额:
    $ 99.67万
  • 项目类别:
Differential function and tumor vulnerabilities revealed by RAS membrane trafficking
RAS 膜运输揭示的差异功能和肿瘤脆弱性
  • 批准号:
    10053541
  • 财政年份:
    2020
  • 资助金额:
    $ 99.67万
  • 项目类别:
Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    10229380
  • 财政年份:
    2018
  • 资助金额:
    $ 99.67万
  • 项目类别:
Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    9447641
  • 财政年份:
    2018
  • 资助金额:
    $ 99.67万
  • 项目类别:
Role of nonsense mediated RNA decay in pancreatic cancer
无义介导的RNA衰变在胰腺癌中的作用
  • 批准号:
    10410447
  • 财政年份:
    2018
  • 资助金额:
    $ 99.67万
  • 项目类别:

相似海外基金

REU Site: Summer Undergraduate Research in Chemistry and Biochemistry at Miami University
REU 网站:迈阿密大学化学与生物化学暑期本科生研究
  • 批准号:
    2349468
  • 财政年份:
    2024
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Continuing Grant
REU Site: Research Experiences for Community College Students in Chemistry and Biochemistry at Texas A&M University-Commerce
REU 网站:德克萨斯 A 社区学院化学和生物化学专业学生的研究经验
  • 批准号:
    2349522
  • 财政年份:
    2024
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Standard Grant
Supporting Talented, Low-Income Undergraduate and Graduate Students in Chemistry and Biochemistry through Career Explorations, Research Experiences, and Scholarships
通过职业探索、研究经验和奖学金支持化学和生物化学领域有才华的低收入本科生和研究生
  • 批准号:
    2322722
  • 财政年份:
    2024
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Standard Grant
Hydrogen and carbon dioxide biochemistry in the bacterial energy-transducing membrane.
细菌能量转换膜中的氢气和二氧化碳生物化学。
  • 批准号:
    BB/Y004302/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Research Grant
Conference: Active Learning Communities in Biochemistry
会议:生物化学主动学习社区
  • 批准号:
    2411535
  • 财政年份:
    2024
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Standard Grant
Biochemistry of Eukaryotic Replication Fork and DNA Repair
真核复制叉的生物化学和 DNA 修复
  • 批准号:
    10550045
  • 财政年份:
    2023
  • 资助金额:
    $ 99.67万
  • 项目类别:
ORCC: The Role of Betaine Lipid Biochemistry in Coral Thermal Tolerance
ORCC:甜菜碱脂质生物化学在珊瑚耐热性中的作用
  • 批准号:
    2307516
  • 财政年份:
    2023
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Continuing Grant
Supporting low-income student success in STEM through community, mentoring, and immersive research in biology and biochemistry
通过生物学和生物化学领域的社区、指导和沉浸式研究,支持低收入学生在 STEM 方面取得成功
  • 批准号:
    2221216
  • 财政年份:
    2023
  • 资助金额:
    $ 99.67万
  • 项目类别:
    Standard Grant
In vivo 2-photon imaging of retinal biochemistry before and after retinal organoid transplantation
视网膜类器官移植前后视网膜生物化学的体内2光子成像
  • 批准号:
    10643273
  • 财政年份:
    2023
  • 资助金额:
    $ 99.67万
  • 项目类别:
Biochemistry of Platelet Desialylation
血小板脱唾液酸化的生物化学
  • 批准号:
    10833844
  • 财政年份:
    2023
  • 资助金额:
    $ 99.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了