Uncovering the molecular networks underlying non-genetic heterogeneity in cancer cell populations
揭示癌细胞群体非遗传异质性背后的分子网络
基本信息
- 批准号:10469459
- 负责人:
- 金额:$ 18.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAntineoplastic AgentsApoptosisBRAF geneBacteriaBiochemicalBioinformaticsBiological ModelsCancer ModelCancer PatientCancer cell lineCell CycleCell DeathCell LineCell physiologyCellsCessation of lifeChromatinComplexComputer ModelsCuesDNA Sequence AlterationDecision MakingDevelopmentDiffusionDrug ToleranceEnsureEpidermal Growth Factor ReceptorEpigenetic ProcessEquilibriumExhibitsFoundationsFutureGaussian modelGoalsGrowthGrowth FactorHeterogeneityImmunocompromised HostIn VitroIndividualKnowledgeLeadMalignant NeoplasmsMalignant neoplasm of lungMathematicsMessenger RNAMetabolismMethodsModelingMolecularMolecular ProfilingMusMutateNatureNon-Small-Cell Lung CarcinomaNormal Statistical DistributionOncogenesPathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPhenotypePlayPopulationProbabilityProcessProteinsReceptor Protein-Tyrosine KinasesRecurrenceResearchResistanceRoleSignal PathwaySignal TransductionSourceSystemSystems AnalysisTechniquesTimeTranscriptTreatment FailureTumor stageTyrosine Kinase InhibitorValidationWorkanticancer researchbasebiochemical modelbiological adaptation to stresscancer cellcancer therapycareercareer developmentdrug distributiondrug sensitivitydrug-sensitivedynamic systemepithelial to mesenchymal transitionexome sequencingexperimental studyfitnessgenetic resistancehigh dimensionalityin silicoin vitro Modelin vivoinformation processinginsightinterestkinetic modelmRNA Expressionmelanomamouse modelmutantnon-geneticnovelnovel therapeuticspredictive modelingpreventreceptorresistance mutationresponsesignature moleculesimulationsingle-cell RNA sequencingskillsstem cell differentiationstressortheoriestherapy resistanttreatment strategytumortumor heterogeneity
项目摘要
PROJECT SUMMARY
Tumor heterogeneity is a major contributor to variable response and treatment failure in cancer patients.
Usually, heterogeneity in cancer is thought of in terms of resistance-conferring genetic mutations that pre-
exist or emerge during treatment. However, recent studies, including our own, increasingly point to non-
genetic sources of heterogeneity as critical factors in the early stages of tumor response. Non-genetic
mechanisms are known to underlie cellular processes such as stem cell differentiation and epithelial-to-
mesenchymal transitions. In bacteria, isogenic cell populations have been shown to diversify in the
absence of perturbations (e.g., drugs) into a variety of cellular phenotypes, each with differential fitness to
potential stressors. This “bet hedging” strategy increases the odds that a portion of the population will
survive a future, unknown challenge. We, and others, have recently hypothesized that cancer cells
employ a similar survival strategy to withstand the initial onslaught of anticancer drugs. So-called “drug
tolerant” cells may persist within a patient for extended periods of time before acquiring genetic resistance
mutations that lead to tumor recurrence. The objective of this proposal is to uncover the molecular factors
that control non-genetic heterogeneity in cancer cell populations using a combined computational and
experimental approach. In Aim 1, I propose to construct a detailed kinetic model of the biochemical
signaling networks that control division and death decisions in individual cancer cells. It is well established
that complex biochemical networks can give rise to multiple stable equilibrium states, known as
“attractors.” Each attractor corresponds to a cellular phenotype and can be conceptualized as a basin
within an “epigenetic landscape.” Cells can transition between phenotypes with rates dependent upon the
depths of the basins and the heights of the barriers separating them. Using a dynamical systems analysis
approach, I will mathematically solve for the epigenetic landscape of the biochemical division/death model
and quantify molecule signatures for all attractors. In Aim 2, using BRAF-mutant melanoma and EGFR-
mutant lung cancer as in vitro model systems, I will use clonal and single-cell RNA sequencing and
chromatin accessibility sequencing (ATAC-seq) to enumerate the number and molecular signatures of
non-genetic phenotypic states. I will also utilize whole-exome sequencing to establish the non-genetic
nature of the phenotypes and immunocompromised mouse models to validate model predictions.
Differences between the experimental and in silico molecular signatures will lead to model refinement and
further experimentation. Quantifying the epigenetic landscapes of cancer cells will lay the groundwork for
novel therapies based on rationally modifying the landscape to favor phenotypes with increased drug
sensitivity, an approach termed “targeted landscaping.” This would reduce the size of the drug-tolerant
pool and delay, perhaps indefinitely, the acquisition of genetic resistance mutations and tumor recurrence.
项目总结
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Concepts of multi-level dynamical modelling: understanding mechanisms of squamous cell carcinoma development in Fanconi anemia.
- DOI:10.3389/fgene.2023.1254966
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Velleuer, Eunike;Dominguez-Huettinger, Elisa;Rodriguez, Alfredo;Harris, Leonard A.;Carlberg, Carsten
- 通讯作者:Carlberg, Carsten
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonard Alfredo L. Harris其他文献
Leonard Alfredo L. Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonard Alfredo L. Harris', 18)}}的其他基金
Uncovering the molecular networks underlying non-genetic heterogeneity in cancer cell populations
揭示癌细胞群体非遗传异质性背后的分子网络
- 批准号:
10249073 - 财政年份:2020
- 资助金额:
$ 18.76万 - 项目类别:
Uncovering the molecular networks underlying non-genetic heterogeneity in cancer cell populations
揭示癌细胞群体非遗传异质性背后的分子网络
- 批准号:
9892615 - 财政年份:2020
- 资助金额:
$ 18.76万 - 项目类别:
相似海外基金
Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
- 批准号:
9975367 - 财政年份:2020
- 资助金额:
$ 18.76万 - 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
- 批准号:
16K11932 - 财政年份:2016
- 资助金额:
$ 18.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
- 批准号:
19591274 - 财政年份:2007
- 资助金额:
$ 18.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
- 批准号:
6346309 - 财政年份:2000
- 资助金额:
$ 18.76万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
2885074 - 财政年份:1999
- 资助金额:
$ 18.76万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
6174221 - 财政年份:1999
- 资助金额:
$ 18.76万 - 项目类别: