Towards the Translation of Synergistic Phage-Polymyxin Combination Therapy against Pandrug-resistant Klebsiella pneumoniae: A Systems Approach

针对泛耐药肺炎克雷伯菌的协同噬菌体-多粘菌素联合疗法的转化:系统方法

基本信息

  • 批准号:
    10470088
  • 负责人:
  • 金额:
    $ 13.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-16 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Antimicrobial resistance (AMR) has become one of the greatest global threats to human health. Pandrug- resistant (PDR) Klebsiella pneumoniae has been identified by the World Health Organization as one of the 3 top- priority pathogens urgently requiring new treatments. Polymyxins are often used as the last option; however, plasmid-mediated polymyxin resistance highlights the urgency to develop novel therapeutics to treat PDR K. pneumoniae. Bacteriophage (i.e. phage) has recently attracted substantial attention as a promising option to treat PDR bacterial infections; unfortunately, resistance to phage monotherapy in K. pneumoniae can rapidly develop. Optimal phage-antibiotic combinations provide a superior approach; however, there is a significant lack of knowledge on the pharmacokinetics/pharmacodynamics/toxicodynamics (PK/PD/TD) of phage therapy. This situation has severely hindered the optimization of phage therapy against bacterial ‘superbugs’ and limited their clinical utility. Traditional PK/PD/TD plays a critical role in optimizing antibiotic dosage regimens, but lacks systems and mechanistic information. Furthermore, antibiotic PK/PD/TD cannot be easily extrapolated to phage therapy, mainly due to their unique PK, host specificity and self-amplification. As phage-antibiotic synergy also depends on the dynamics of infection and host responses, innovative strategies incorporating systems pharmacology and host-pathogen-phage-antibiotic interactions have the significant potential to optimize their clinical use. Excitingly, we have isolated a number of phages with superior activity against PDR K. pneumoniae, and identified several novel phage-antibiotic combinations (e.g. with polymyxins) that synergistically kill PDR K. pneumoniae in vitro and in animals without any regrowth. Considering the urgent need to optimize phage therapy and minimize resistance to the last-line polymyxins, it is essential to develop superior phage-polymyxin combinations using a systems approach by integrating PK/PD/TD and multi-omics. Therefore, the Specific Aims of this application are: (1) To identify superior synergistic combinations of phage and polymyxin B, and evaluate their PK/PD/TD against PDR K. pneumoniae using in vitro and animal infection models; (2) To elucidate the mechanisms of synergistic bacterial killing by the superior phage-polymyxin combinations and the host- pathogen-phage-polymyxin interactions using correlative multi-omics; and (3) To develop novel QSP models integrating PK/PD/TD and multi-omics data for the superior phage-polymyxin combinations targeting PDR K. pneumoniae, and propose optimal dosage regimens for future clinical trials. Our innovative multi-disciplinary project will generate urgently needed information for rational optimization of novel phage-polymyxin combinations. Importantly, this proposal aligns perfectly with the present NIAID RFA for exploiting phages to kill ‘superbugs’ and responds in a timely manner to the recent 2019 NIAID Antibiotic Resistance Framework to protect global health security.
抗生素耐药性(AMR)已成为全球人类健康面临的最大威胁之一。潘德鲁格- 耐药(PDR)肺炎克雷伯氏菌已被世界卫生组织确定为三大 急需新疗法的优先病原体。多粘菌素通常被用作最后的选择;然而, 质粒介导的多粘菌素抗性突出了开发治疗PDR K的新疗法的紧迫性。 肺炎。噬菌体(即噬菌体)最近作为一种有前途的选择吸引了大量的关注, 治疗PDR细菌感染;不幸的是,K.肺炎可以迅速 开发.最佳的噬菌体-抗生素组合提供了一种上级方法;然而, 关于噬菌体疗法的药代动力学/药效学/毒理学(PK/PD/TD)的知识。这 这种情况严重阻碍了针对细菌“超级细菌”的噬菌体治疗的优化,并限制了它们的应用。 临床应用传统的PK/PD/TD在优化抗生素给药方案中起着关键作用,但缺乏 系统和机械信息。此外,抗生素PK/PD/TD不能容易地外推到噬菌体 治疗,主要是由于其独特的PK,宿主特异性和自我放大。由于噬菌体-抗生素协同作用也 取决于感染和宿主反应的动态, 药理学和宿主-病原体-噬菌体-抗生素相互作用具有优化其 临床应用。令人兴奋的是,我们已经分离出许多对PDR K具有上级活性的化合物。肺炎, 并鉴定了几种协同杀死PDR K的新型噬菌体-抗生素组合(例如与多粘菌素)。 肺炎在体外和动物中没有任何再生长。考虑到优化噬菌体疗法的迫切需要 为了减少对最后一种多粘菌素的耐药性,必须开发上级噬菌体多粘菌素 通过整合PK/PD/TD和多组学,使用系统方法进行组合。因此,具体目标 (1)鉴定噬菌体和多粘菌素B的上级协同组合,并评估 其PK/PD/TD对PDR K的影响。肺炎使用体外和动物感染模型;(2)为了阐明 通过上级噬菌体-多粘菌素组合和宿主的协同杀菌机制, 利用相关多组学研究病原体-噬菌体-多粘菌素相互作用;(3)建立新型QSP模型 整合靶向PDR K的上级噬菌体-多粘菌素组合的PK/PD/TD和多组学数据。 pneumoniae,并为未来的临床试验提出最佳剂量方案。我们创新的多学科 该项目将为合理优化新型噬菌体-多粘菌素产生急需的信息 组合。重要的是,该提案与目前NIAID RFA完全一致,用于利用病毒进行杀伤 “超级细菌”,并及时响应最近的2019年NIAID抗生素耐药性框架, 保护全球健康安全。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparative metabolomics revealed key pathways associated with the synergistic killing of multidrug-resistant Klebsiella pneumoniae by a bacteriophage-polymyxin combination.
比较代谢组学揭示了与通过噬菌体 - polymyxin组合通过协同杀死多药耐药性肺炎肺炎的关键途径。
  • DOI:
    10.1016/j.csbj.2021.12.039
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Han ML;Nang SC;Lin YW;Zhu Y;Yu HH;Wickremasinghe H;Barlow CK;Creek DJ;Crawford S;Rao G;Dai C;Barr JJ;Chan K;Turner Schooley R;Velkov T;Li J
  • 通讯作者:
    Li J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Li其他文献

Jian Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Li', 18)}}的其他基金

Do long working hours increase the risk of cardiovascular disease mortality? Evidence from the U.S. National Health Interview Survey 1997-2015
长时间工作会增加心血管疾病死亡风险吗?
  • 批准号:
    10509317
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
Roles of heat shock transcriptional factor 1 in cell proliferation independent of the heat shock response
热休克转录因子 1 在细胞增殖中的作用与热休克反应无关
  • 批准号:
    10796280
  • 财政年份:
    2020
  • 资助金额:
    $ 13.72万
  • 项目类别:
Roles of heat shock transcriptional factor 1 in cell proliferation independent of the heat shock response
热休克转录因子 1 在细胞增殖中的作用与热休克反应无关
  • 批准号:
    10699046
  • 财政年份:
    2020
  • 资助金额:
    $ 13.72万
  • 项目类别:
Roles of heat shock transcriptional factor 1 in cell proliferation independent of the heat shock response
热休克转录因子 1 在细胞增殖中的作用与热休克反应无关
  • 批准号:
    10701882
  • 财政年份:
    2020
  • 资助金额:
    $ 13.72万
  • 项目类别:
Roles of heat shock transcriptional factor 1 in cell proliferation independent of the heat shock response
热休克转录因子 1 在细胞增殖中的作用与热休克反应无关
  • 批准号:
    10251924
  • 财政年份:
    2020
  • 资助金额:
    $ 13.72万
  • 项目类别:
Roles of heat shock transcriptional factor 1 in cell proliferation independent of the heat shock response
热休克转录因子 1 在细胞增殖中的作用与热休克反应无关
  • 批准号:
    10028798
  • 财政年份:
    2020
  • 资助金额:
    $ 13.72万
  • 项目类别:
Advancing innovative therapies against pandrug-resistant Gram-negative superbugs
推进针对全耐药革兰氏阴性超级细菌的创新疗法
  • 批准号:
    10189507
  • 财政年份:
    2019
  • 资助金额:
    $ 13.72万
  • 项目类别:
Advancing innovative therapies against pandrug-resistant Gram-negative superbugs
推进针对全耐药革兰氏阴性超级细菌的创新疗法
  • 批准号:
    10641847
  • 财政年份:
    2019
  • 资助金额:
    $ 13.72万
  • 项目类别:
Advancing innovative therapies against pandrug-resistant Gram-negative superbugs
推进针对全耐药革兰氏阴性超级细菌的创新疗法
  • 批准号:
    10441316
  • 财政年份:
    2019
  • 资助金额:
    $ 13.72万
  • 项目类别:
Targeting the Urgent Need for New Antibiotics against Gram-negative ‘Superbugs’
针对针对革兰氏阴性“超级细菌”的新型抗生素的迫切需求
  • 批准号:
    10219081
  • 财政年份:
    2017
  • 资助金额:
    $ 13.72万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了