Deep Neural Networks To Treat Atrial Fibrillation

深度神经网络治疗心房颤动

基本信息

  • 批准号:
    10470132
  • 负责人:
  • 金额:
    $ 19.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Atrial fibrillation (AF) is a major health problem affecting over 5 million people in the US leading to significant morbidity and even mortality. Therapy for this epidemic is suboptimal, with success of 30-70% at 1 year for most therapies. Despite great advances in understanding potential AF mechanisms, these insights have not yet translated into better AF therapy. The scientific focus of the project centers on the issue of identifying novel phenotypes for the heterogeneous conditions that currently fall under the rubric of AF. Machine learning is an approach well-suited to identify novel classifications from large diverse data sets that are traditionally difficult to separate. I will use machine learning and computational methods to analyze detailed clinical, structural, cardiac electrophysiological and biochemical features in patients with AF, to better predict responders and non-responders to various therapies. This may enable prospective guidance to tailor personalized therapy. In performing this project, I will grow as a physician-scientist focused on patient-oriented research in atrial fibrillation. The specific aims of the scientific project are as follows: First, I will create a novel disease taxonomy for AF that classifies patients successfully treated by risk factor modification, antiarrhythmic drug therapy, or diverse approaches to ablation, using computational methods and supervised learning on large training data from my collaborators. I will assess the predictive efficacy of these disease partitions in a testing cohort of patients referred for treatment of AF. Second, I will use advanced techniques in machine learning and patient-level analyses to explain why a certain strategy may fail or succeed in an individual, paving the way for clinical use. Third, in a pilot prospective clinical study, I will assess the feasibility and accuracy of these machine learning models. The findings from these experiments may provide an immediate clinical impact by delivering AF therapy options in a patient-specific manner that optimizes benefit while reducing risk. In addition, under the balanced and expert mentorship provided by this award, I will gain the necessary computational modelling, clinical research design and biostatistical methodology experience to design comprehensive studies and be competitive for independent funding.
项目摘要 心房纤颤(AF)是影响美国超过500万人的主要健康问题,导致严重的心血管疾病。 发病率甚至死亡率。这种流行病的治疗是次优的,1年的成功率为30-70%, 大多数治疗尽管在理解潜在的AF机制方面取得了很大进展,但这些见解还没有 却转化为更好的房颤治疗。 该项目的科学重点是确定异质性的新表型的问题。 机器学习是一种非常适合识别AF的方法。 从传统上难以分离的大的不同的数据集的新的分类。我会用机器 学习和计算方法来分析详细的临床,结构,心脏电生理和 AF患者的生化特征,以更好地预测各种治疗的应答者和非应答者。 这可以实现前瞻性指导以定制个性化治疗。在执行这个项目时,我将成长为一个 心房颤动的治疗方法有哪些? 该科学项目的具体目标如下:首先,我将为AF创建一个新的疾病分类法 将通过风险因素调整、抗肿瘤药物治疗或多种治疗方法成功治疗的患者分类, 消融的方法,使用计算方法和监督学习的大型训练数据,从我的 合作者我将评估这些疾病分区在测试患者队列中的预测功效 其次,我将使用机器学习和患者水平的先进技术, 分析解释为什么某种策略在个体中可能失败或成功,为临床使用铺平道路。 第三,在一项试点前瞻性临床研究中,我将评估这些机器学习的可行性和准确性 模型 这些实验的结果可能通过提供AF治疗提供直接的临床影响 以患者特定的方式提供选择,在降低风险的同时优化获益。此外,在平衡 和专家指导提供了这个奖项,我将获得必要的计算建模,临床 研究设计和生物统计方法的经验,设计全面的研究, 竞争独立融资。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tina Baykaner其他文献

Tina Baykaner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tina Baykaner', 18)}}的其他基金

Deep Neural Networks To Treat Atrial Fibrillation
深度神经网络治疗心房颤动
  • 批准号:
    10688134
  • 财政年份:
    2019
  • 资助金额:
    $ 19.35万
  • 项目类别:
Deep Neural Networks To Treat Atrial Fibrillation
深度神经网络治疗心房颤动
  • 批准号:
    10227786
  • 财政年份:
    2019
  • 资助金额:
    $ 19.35万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 19.35万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 19.35万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了