Defining mechanisms for natural vision in the primate brain with machine learning
通过机器学习定义灵长类动物大脑中的自然视觉机制
基本信息
- 批准号:10471557
- 负责人:
- 金额:$ 152.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsBehaviorBioprosthesis deviceBrainCategoriesChronicCodeComplexDataDevelopmentEducational workshopEthologyExperimental DesignsFaceGoalsHourImageImplantKnowledgeLaboratoriesLeadMacacaMachine LearningMedical ImagingMethodsMicroelectrodesModelingMonkeysNatural SelectionsNervous System PhysiologyNeural Network SimulationNeuronsOutcomePatternPopulationPrimatesProblem SolvingPublic HealthResearchResearch PersonnelSemanticsSiteStimulusSystemTerminologyTestingTrainingVisionVisualVisual CortexVisual impairmentVisual system structureWorkawakebasecortical visual impairmentdesigngenerative adversarial networkinferotemporal cortexneural networknonhuman primateobject recognitionpublic health relevancerepositoryresponsesensory processing disordertheories
项目摘要
PROJECT SUMMARY. To understand vision, we must be able to explain how it works in the natural world.
Currently, while we can explain and predict how visual cortex neurons respond in limited laboratory conditions,
most predictions fail when neurons are tested with randomly selected photographs of the natural world. One
problem is that neurons in the monkey are usually tested using simple stimuli such as lines and dots, or using
photographs from limited semantically defined categories (e.g. faces, places). In order to advance our
knowledge of how neurons function with more complex visual inputs, we manipulated naturalistic images using
neural network models called generative adversarial networks (GANs). GANS are trained to parameterize
images similar to those in the natural world. We found that, when combined with evolutionary (search)
algorithms, GANs synthesized images that highly activated inferotemporal cortex (IT) neurons, recorded using
microelectrode arrays in awake behaving macaques. Neurons showed a range of response firing rates that
exceed those elicited by previous approaches.
The discovery of these highly activating images has energized a field-wide debate about how to best
describe the tuning of neurons of the object-recognition system. Should neuronal activity be described using
investigator-designed parametric frameworks (e.g., orientation, curvature), perceptual distances from highly
activating images, or through data-fitted neural networks? In this proposed research, we will test these and
other experimental designs to determine the best way to predict neuronal responses to natural images. We will
pair approaches in a “tournament”-like meta-design, testing the same populations of neurons over hours and
across days, using chronically implanted microelectrode arrays in awake, behaving non-human primates. We
will also show which methods are best at predicting population response patterns comprising dozens of cortical
visual sites. The project will include the development of workshops with other investigating teams in order to
develop standard terminology and desiderata in explanatory theories of visual function. Although our own
overarching theory is that the activity of a given cortical neuron represents the similarity from visual inputs to
that neuron's most highly activating image (more precisely, to the visual attributes it contains), we will rely on
neural networks as a unifying mechanism behind all approaches. The project will illustrate how to derive brain-
wide organizational principles (based on ethology and concepts from natural selection) to explain visual
recognition, and to constrain the space of neural networks that can best serve as models of the brain.
The expected outcome is a framework for understanding how occipito-temporal neurons act in
naturalistic image spaces, and how their representational capabilities inform recognition-based behaviors.
Further, we will create code repositories (https://github.com/PonceLab) to encourage others to implement all
approaches in their own research.
项目总结。要理解视觉,我们必须能够解释它在自然界中是如何工作的。
目前,虽然我们可以解释和预测视觉皮层神经元在有限的实验室条件下如何反应,
当用随机选择的自然界照片来测试神经元时,大多数预测都失败了。一
问题是,猴子的神经元通常是使用简单的刺激,如线和点,或使用
来自有限的语义定义的类别(例如,脸、地点)的照片。为了推进我们的
关于神经元如何在更复杂的视觉输入中发挥作用的知识,我们使用
神经网络模型称为生成性对抗网络(GANS)。Gans接受了参数化培训
与自然界相似的图像。我们发现,当与进化(搜索)相结合时
算法,Gans合成了高度激活下颞叶皮质(IT)神经元的图像,使用
清醒状态下猕猴的微电极阵列。神经元表现出一系列的反应放电率
超过了以前的方法所引发的。
这些高度活跃的图像的发现引发了一场关于如何最好地
描述物体识别系统的神经元的调节。神经元的活动是否应该用
调查员设计的参数框架(例如,方向、曲率)、与高度
激活图像,还是通过数据拟合的神经网络?在这项拟议的研究中,我们将测试这些和
其他实验设计,以确定预测神经元对自然图像反应的最佳方法。我们会
配对方法,在一个类似比赛的元设计中,在几个小时内测试相同的神经元群体
几天来,在清醒的灵长类动物中使用长期植入的微电极阵列,表现出非人类的行为。我们
还将展示哪些方法最适合预测包含数十个大脑皮层的种群反应模式
视觉站点。该项目将包括与其他调查小组共同举办讲习班,以便
开发视觉功能解释理论中的标准术语和期望数据。尽管我们自己
最重要的理论是,给定皮质神经元的活动代表了从视觉输入到
神经元最活跃的图像(更准确地说,是它所包含的视觉属性),我们将依赖于
神经网络作为所有方法背后的统一机制。该项目将说明如何获得大脑-
广泛的组织原则(基于行为学和自然选择的概念)来解释视觉
识别,并限制最能作为大脑模型的神经网络的空间。
预期的结果是一个了解枕颞区神经元如何活动的框架。
自然主义图像空间,以及它们的表征能力如何影响基于识别的行为。
此外,我们将创建代码存储库(https://github.com/PonceLab)以鼓励其他人实现所有
在他们自己的研究中采用了一些方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CARLOS Ramon PONCE其他文献
CARLOS Ramon PONCE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CARLOS Ramon PONCE', 18)}}的其他基金
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 152.55万 - 项目类别:
Studentship
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 152.55万 - 项目类别:
Continuing Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 152.55万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319849 - 财政年份:2024
- 资助金额:
$ 152.55万 - 项目类别:
Standard Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
- 批准号:
2322310 - 财政年份:2024
- 资助金额:
$ 152.55万 - 项目类别:
Continuing Grant
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
- 批准号:
2337351 - 财政年份:2024
- 资助金额:
$ 152.55万 - 项目类别:
Continuing Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 152.55万 - 项目类别:
Standard Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 152.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 152.55万 - 项目类别:
Standard Grant
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
- 批准号:
23K20274 - 财政年份:2024
- 资助金额:
$ 152.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)