TRP channels in the regulation of vascular tone
TRP 通道在血管张力调节中的作用
基本信息
- 批准号:10474959
- 负责人:
- 金额:$ 53.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-02-04 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdipose tissueAgingAnimal Disease ModelsAnimal ModelArachidonic AcidsArteriesAtherosclerosisBindingBinding SitesBlood VesselsCause of DeathCellsCoronaryCoronary ArteriosclerosisCyclic AMP-Dependent Protein KinasesDiseaseElectrophysiology (science)Endothelial CellsEndotheliumEnzymesEquilibriumFunctional disorderFundingGene ExpressionGenetic PolymorphismGoalsHealthHomeostasisHumanHydrogen PeroxideImageImpairmentInflammationIon ChannelKnock-outLigandsMass Spectrum AnalysisMediatingMediator of activation proteinMetabolismMicrocirculationMicrovascular DysfunctionMitochondriaModelingMolecularMutagenesisMyocardial IschemiaNADPH OxidaseNitric OxideOutcomeOxidation-ReductionPathogenesisPathologicPathologyPathway interactionsPatient-Focused OutcomesPatientsPharmacologyPhospholipase A2PhosphorylationPlayProcessProductionProtein IsoformsProteinsReactive Oxygen SpeciesRegulationRoleSignal TransductionSmall Interfering RNAStructural ModelsStructureTRP channelTestingVanilloidVariantVascular DiseasesVasodilationVasodilator AgentsWomanacute stressanalogarteriolebasedesigneicosanoid metabolismendothelial dysfunctiongain of functionhuman diseasehuman modelhuman tissueimprovedin vivoinhibitorinnovationinsightlipophilicitymenmolecular modelingnovelnovel strategiesoutcome predictionpatch clampreceptorrelease factorstructural biologysynergismtargeted treatmenttranscriptome sequencingvasomotion
项目摘要
Vascular homeostasis is critically dependent upon vasodilator factors released from the endothelium. The most
prominent of these factors is nitric oxide (NO), which is the main barometer of endothelial function and becomes
impaired in a broad range of diseases including coronary artery disease (CAD). In the human coronary and
adipose microcirculation, we have demonstrated a novel process where loss of NO-dependent flow-mediated
dilation (FMD) in subjects with CAD is compensated by the production of hydrogen peroxide (H2O2) from
endothelial mitochondria and subsequent H2O2-dependent dilation. Although both are vasodilators, H2O2, in
opposition to NO, generally promotes cell activation, inflammation, and atherosclerosis, and thus understanding
mechanisms responsible for this transition from NO to H2O2 may be key to developing novel strategies to improve
endothelial function in patients with CAD. The overall goal of this project is to elucidate the signaling mechanisms
that regulate the vasodilator switch from NO to H2O2 during CAD. Building on findings from the last cycle, this
proposal is designed to determine intracellular pathways responsible for a previously unappreciated gain of
function of endothelial transient receptor potential vanilloid 4 (TRPV4) channels and its contribution to vasodilator
switch in CAD. We will test the central hypothesis that a synergy of shear-sensitive phospholipase A2-derived
arachidonic acid and NADPH oxidase signaling promotes TRPV4 activation and subsequent H2O2-dependent
dilation while cross-inhibiting NO-dependent dilation in CAD arterioles. Further, NADPH oxidases as novel aging-
and CAD-associated upstream regulators play a critical role in initiating the switch. This application brings
together expertise in vasomotion regulation, human microcirculation, and ion channel structural biology to identify
novel molecular mechanisms and interactions that regulate vasodilator switch during CAD. Specific Aims: (1) we
will determine the molecular mechanism of TRPV4 activation and arteriolar dilation by flow; and (2) we will
determine how NADPH oxidases regulate TRPV4 activation and conversion from NO to H2O2 as mediator of
FMD in CAD arterioles. Studies will be conducted on freshly isolated human arterioles and endothelial cells as
well as in vivo animal models, using a multifaceted approach incorporating isolated vessel reactivity, Ca2+
imaging, patch-clamping electrophysiology, mass spectrometry, RNA-Seq, mutagenesis, and ion channel
molecular modeling. Significance: our proposed studies will provide insight into fundamental mechanisms
regulating human microvascular function in health and disease and potentially impact our approach to coronary
microvascular dysfunction associated with CAD and a variety of other vascular pathologies.
血管内环境的稳定主要依赖于内皮细胞释放的血管扩张因子。最
这些因素中的突出的是一氧化氮(NO),其是内皮功能的主要晴雨表,
在包括冠状动脉疾病(CAD)在内的广泛疾病中受损。在人体冠状动脉和
脂肪微循环,我们已经证明了一个新的过程,其中损失NO依赖的流量介导的
CAD受试者的血管扩张(FMD)通过从血管扩张中产生过氧化氢(H2 O2)来补偿。
内皮线粒体和随后的H2 O2依赖性扩张。虽然两者都是血管扩张剂,但H2 O2,
与NO相反,通常促进细胞活化,炎症和动脉粥样硬化,因此了解
负责从NO到H2 O2的这种转变的机制可能是开发新策略的关键,
冠心病患者的内皮功能。这个项目的总体目标是阐明信号机制
在CAD期间调节血管扩张剂从NO到H2 O2的转换。在上一个周期调查结果的基础上,
该提案旨在确定细胞内途径,负责以前不受重视的增益,
内皮细胞瞬时受体电位香草酸4(TRPV 4)通道的功能及其对血管舒张的作用
在CAD中切换。我们将测试中心假设,剪切敏感磷脂酶A2衍生的协同作用,
花生四烯酸和NADPH氧化酶信号传导促进TRPV 4激活和随后的H2 O2依赖性
扩张,同时交叉抑制CAD小动脉中的NO依赖性扩张。此外,NADPH氧化酶作为新的老化-
CAD相关的上游调节器在启动转换中起关键作用。该应用程序带来了
结合血管舒缩调节、人体微循环和离子通道结构生物学方面的专业知识,
新的分子机制和相互作用,调节血管扩张开关在CAD。具体目标:(1)我们
将确定TRPV 4激活和小动脉扩张的分子机制;(2)我们将
确定NADPH氧化酶如何调节TRPV 4活化和从NO转化为H2 O2作为介体,
CAD小动脉中的FMD。研究将在新鲜分离的人小动脉和内皮细胞上进行,
以及体内动物模型,使用多方面的方法,包括分离的血管反应性,Ca 2 +
成像、膜片钳电生理学、质谱、RNA-Seq、诱变和离子通道
分子模拟意义:我们提出的研究将提供深入了解的基本机制
调节健康和疾病中的人体微血管功能,并可能影响我们对冠状动脉疾病的治疗方法。
微血管功能障碍与CAD和各种其他血管病变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David X. Zhang其他文献
Study Design and Rationale of EXPLORER-HCM
EXPLORER-HCM 的研究设计和原理
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Carolyn Y. Ho;I. Olivotto;D. Jacoby;S. Lester;M. Roe;Andrew Wang;C. Waldman;David X. Zhang;A. Sehnert;S. Heitner - 通讯作者:
S. Heitner
Critical Role of Lipid Raft Redox Signaling Platforms in Endostatin-Induced Coronary
脂筏氧化还原信号平台在内皮抑素诱导的冠状动脉中的关键作用
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
David X. Zhang;A. Zou;Pin - 通讯作者:
Pin
A Paradigm Shift in Treating Vascular Smooth Muscle Cell–Related Proliferative Disease?
治疗血管平滑肌细胞相关增殖性疾病的范式转变?
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
David X. Zhang - 通讯作者:
David X. Zhang
Nitric oxide inhibits Ca mobilization through cADP-ribose signaling in coronary arterial smooth muscle cells
一氧化氮通过冠状动脉平滑肌细胞中的 cADP-核糖信号传导抑制 Ca 动员
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Yu Jiang;David X. Zhang;A. Zou;W. Campbell;Li Pin - 通讯作者:
Li Pin
TRPV4 mediates flow – induced dilation in human coronary arterioles
TRPV4 介导人冠状动脉血流诱导扩张
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
A. Bubolz;David X. Zhang;Brandon T. Larsen;D. Gutterman - 通讯作者:
D. Gutterman
David X. Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David X. Zhang', 18)}}的其他基金
TRP channels in the regulation of vascular tone
TRP 通道在血管张力调节中的作用
- 批准号:
10117552 - 财政年份:2011
- 资助金额:
$ 53.45万 - 项目类别:
TRP channels in the regulation of vascular tone
TRP 通道在血管张力调节中的作用
- 批准号:
10654013 - 财政年份:2011
- 资助金额:
$ 53.45万 - 项目类别:
TRP Channels In The Regulation of Vascular Tone
TRP 调节血管张力的通道
- 批准号:
9197689 - 财政年份:2011
- 资助金额:
$ 53.45万 - 项目类别:
TRP Channels In The Regulation of Vascular Tone
TRP 调节血管张力的通道
- 批准号:
9027265 - 财政年份:2011
- 资助金额:
$ 53.45万 - 项目类别:
相似海外基金
Role of Histone Deacetylase 9 (HDAC9) in adipose tissue aging: mitochondrial function, oxidative stress and senescence
组蛋白脱乙酰酶 9 (HDAC9) 在脂肪组织衰老中的作用:线粒体功能、氧化应激和衰老
- 批准号:
10707000 - 财政年份:2022
- 资助金额:
$ 53.45万 - 项目类别:
Effects of aging and exercise training on intermuscular adipose tissue (IMAT) in MoTrPAC
衰老和运动训练对 MoTrPAC 肌间脂肪组织 (IMAT) 的影响
- 批准号:
10467912 - 财政年份:2022
- 资助金额:
$ 53.45万 - 项目类别:
Marrow Adipose Tissue as a Novel Regulator of Systemic Metabolism and Inflammation During Aging.
骨髓脂肪组织作为衰老过程中全身代谢和炎症的新型调节器。
- 批准号:
10349939 - 财政年份:2022
- 资助金额:
$ 53.45万 - 项目类别:
Effects of aging and exercise training on intermuscular adipose tissue (IMAT) in MoTrPAC
衰老和运动训练对 MoTrPAC 肌间脂肪组织 (IMAT) 的影响
- 批准号:
10703366 - 财政年份:2022
- 资助金额:
$ 53.45万 - 项目类别:
Marrow Adipose Tissue as a Novel Regulator of Systemic Metabolism and Inflammation During Aging.
骨髓脂肪组织作为衰老过程中全身代谢和炎症的新型调节器。
- 批准号:
10689661 - 财政年份:2022
- 资助金额:
$ 53.45万 - 项目类别:
Syndecan-4 as a molecular link between adipose tissue and aging
Syndecan-4 作为脂肪组织与衰老之间的分子联系
- 批准号:
10232057 - 财政年份:2020
- 资助金额:
$ 53.45万 - 项目类别:
Syndecan-4 as a molecular link between adipose tissue and aging
Syndecan-4 作为脂肪组织与衰老之间的分子联系
- 批准号:
9894151 - 财政年份:2020
- 资助金额:
$ 53.45万 - 项目类别:
Pathophysiological functions of a multifunctional molecule, myoferlin, in adipose tissue and its involvement in individual aging
多功能分子肌铁蛋白在脂肪组织中的病理生理功能及其与个体衰老的关系
- 批准号:
20K22873 - 财政年份:2020
- 资助金额:
$ 53.45万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigating the role of adipose tissue in mobility and aging (SOMMA-AT)
研究脂肪组织在活动能力和衰老中的作用 (SOMMA-AT)
- 批准号:
10083347 - 财政年份:2020
- 资助金额:
$ 53.45万 - 项目类别: