TRP Channels In Regulation of Vascular Tone

TRP 通道调节血管张力

基本信息

  • 批准号:
    8792399
  • 负责人:
  • 金额:
    $ 37.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-02-04 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Shear stress generated by blood flow is one of the most important physiological regulators of vascular tone. Flow stimulates vascular endothelial cell to release vasodilator factors that subsequently relax underlying smooth muscle, a response often known as flow-mediated dilation (FMD). In human coronary arterioles (HCA), FMD results from the release of two entirely independent dilator factors: nitric oxide (NO) in subjects without coronary artery disease (CAD), and reactive oxygen species (ROS), specifically hydrogen peroxide (H2O2) derived from the mitochondrial electron transport chain, in CAD patients. However, it remains unsolved how shear induces the release of these two distinct relaxing factors. The present proposal will test a central hypothesis that the transient receptor potential vanilloid 4 (TRPV4) channel serves as a common mechanism for the release of two otherwise diversely regulated relaxing factors (NO and mitochondria-derived H2O2) responsible for FMD in the human coronary microcirculation. We further propose that the signaling cascade occurs within caveolae that host novel interactions between the plasma membrane and mitochondria. Studies will be conducted on isolated HCA and cultured endothelial cells using an integrated approach incorporating molecular biology, electrophysiology and fluorescence/electron imaging techniques with in vitro assessment of vessel reactivity. Genetically engineered mice will also be used to provide more definitive corroboration of the human data. Three specific aims are proposed. Aim 1 will determine whether FMD requires endothelial TRPV4 in HCA from patients with or without CAD. We will test the effects of pharmacological inhibition and siRNA downregulation of TRPV4 on flow-induced Ca2+ entry, ROS/NO release, and vasodilation in HCA from CAD and non-CAD subjects. In aim 2, we will examine whether endothelial TRPV4 channels are associated with caveolae and whether this association is essential for shear-induced TRPV4 activation. We will test three caveolae-associated signaling events contributing to TRPV4 activation: namely, TRPV4 translocation, caveolin-1 regulation, and phospholipase A2-epoxyeicosatrienoic acids activation. In aim 3, we will determine whether shear increases mitochondrial ROS through localized Ca2+ signaling involving caveolar TRPV4 and adjacent mitochondria and whether this process is negatively regulated by NO. The proposed research will, for the first time, link endothelial TRPV4, caveolae, and mitochondria as essential signaling components for FMD in humans. We expect the outcomes of this proposal will substantially increase our understanding of the intricate signaling mechanisms involved in FMD in the human coronary microcirculation, and may lead to new therapeutic targets for the treatment of CAD and/or other cardiovascular disorders.
描述(由申请人提供):血流产生的剪切应力是血管张力最重要的生理调节因子之一。血流刺激血管内皮细胞释放血管舒张因子,随后放松底层平滑肌,这种反应通常称为血流介导的扩张(FMD)。在人类冠状动脉(HCA)中,FMD由两种完全独立的扩张因子的释放引起:无冠状动脉疾病(CAD)的受试者中的一氧化氮(NO),以及CAD患者中的活性氧(ROS),特别是来自线粒体电子传递链的过氧化氢(H2 O2)。然而,它仍然没有解决如何剪切诱导释放这两个不同的松弛因子。目前的建议将测试一个中心的假设,瞬时受体电位香草素4(TRPV 4)通道作为一个共同的机制,释放两个否则diabetes调节松弛因子(NO和H2 O2)负责FMD在人类冠状动脉微循环。我们进一步提出,信号级联发生在细胞膜和线粒体之间的新型相互作用的小窝。将使用整合分子生物学、电生理学和荧光/电子成像技术的综合方法对分离的HCA和培养的内皮细胞进行研究,并对血管反应性进行体外评估。基因工程小鼠也将被用来提供更明确的人类数据的确证。提出了三个具体目标。目的1将确定FMD是否需要患有或不患有CAD的患者的HCA中的内皮TRPV 4。我们将测试药物抑制和siRNA下调TRPV 4对CAD和非CAD受试者HCA中血流诱导的Ca 2+内流、ROS/NO释放和血管舒张的影响。在目标2中,我们将研究内皮TRPV 4通道是否与小窝相关,以及这种相关性是否对剪切诱导的TRPV 4激活至关重要。我们将测试三个小窝相关的信号事件有助于TRPV 4的激活:即,TRPV 4易位,小窝蛋白-1调节,和磷脂酶A2-环氧二十碳三烯酸激活。在目标3中,我们将确定剪切是否通过涉及小窝TRPV 4和邻近线粒体的局部Ca 2+信号传导增加线粒体ROS,以及该过程是否受NO负调控。拟议的研究将首次将内皮TRPV 4,小窝和线粒体作为人类FMD的重要信号传导成分联系起来。我们预计,这一提议的结果将大大增加我们对人类冠状动脉微循环中FMD所涉及的复杂信号传导机制的理解,并可能为治疗CAD和/或其他心血管疾病带来新的治疗靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David X. Zhang其他文献

Study Design and Rationale of EXPLORER-HCM
EXPLORER-HCM 的研究设计和原理
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carolyn Y. Ho;I. Olivotto;D. Jacoby;S. Lester;M. Roe;Andrew Wang;C. Waldman;David X. Zhang;A. Sehnert;S. Heitner
  • 通讯作者:
    S. Heitner
Critical Role of Lipid Raft Redox Signaling Platforms in Endostatin-Induced Coronary
脂筏氧化还原信号平台在内皮抑素诱导的冠状动脉中的关键作用
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David X. Zhang;A. Zou;Pin
  • 通讯作者:
    Pin
A Paradigm Shift in Treating Vascular Smooth Muscle Cell–Related Proliferative Disease?
治疗血管平滑肌细胞相关增殖性疾病的范式转变?
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David X. Zhang
  • 通讯作者:
    David X. Zhang
Nitric oxide inhibits Ca mobilization through cADP-ribose signaling in coronary arterial smooth muscle cells
一氧化氮通过冠状动脉平滑肌细胞中的 cADP-核糖信号传导抑制 Ca 动员
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Jiang;David X. Zhang;A. Zou;W. Campbell;Li Pin
  • 通讯作者:
    Li Pin
TRPV4 mediates flow – induced dilation in human coronary arterioles
TRPV4 介导人冠状动脉血流诱导扩张
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Bubolz;David X. Zhang;Brandon T. Larsen;D. Gutterman
  • 通讯作者:
    D. Gutterman

David X. Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David X. Zhang', 18)}}的其他基金

TRP channels in the regulation of vascular tone
TRP 通道在血管张力调节中的作用
  • 批准号:
    10474959
  • 财政年份:
    2011
  • 资助金额:
    $ 37.47万
  • 项目类别:
TRP channels in the regulation of vascular tone
TRP 通道在血管张力调节中的作用
  • 批准号:
    10117552
  • 财政年份:
    2011
  • 资助金额:
    $ 37.47万
  • 项目类别:
TRP channels in the regulation of vascular tone
TRP 通道在血管张力调节中的作用
  • 批准号:
    10654013
  • 财政年份:
    2011
  • 资助金额:
    $ 37.47万
  • 项目类别:
TRP channels in regulation of vascular tone
TRP 通道调节血管张力
  • 批准号:
    8220836
  • 财政年份:
    2011
  • 资助金额:
    $ 37.47万
  • 项目类别:
TRP channels in regulation of vascular tone
TRP 通道调节血管张力
  • 批准号:
    8039458
  • 财政年份:
    2011
  • 资助金额:
    $ 37.47万
  • 项目类别:
TRP Channels In The Regulation of Vascular Tone
TRP 调节血管张力的通道
  • 批准号:
    9197689
  • 财政年份:
    2011
  • 资助金额:
    $ 37.47万
  • 项目类别:
TRP channels in regulation of vascular tone
TRP 通道调节血管张力
  • 批准号:
    8423073
  • 财政年份:
    2011
  • 资助金额:
    $ 37.47万
  • 项目类别:
TRP channels in regulation of vascular tone
TRP 通道调节血管张力
  • 批准号:
    8611855
  • 财政年份:
    2011
  • 资助金额:
    $ 37.47万
  • 项目类别:
TRP Channels In The Regulation of Vascular Tone
TRP 调节血管张力的通道
  • 批准号:
    9027265
  • 财政年份:
    2011
  • 资助金额:
    $ 37.47万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了