Investigating the adaptive role of heat-induced biomolecular condensates in translational regulation
研究热诱导生物分子缩合物在翻译调节中的适应性作用
基本信息
- 批准号:10475632
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:5&apos Untranslated RegionsAffectBehaviorBindingBioinformaticsBody TemperatureCell SurvivalCellsCellular Stress ResponseChicagoComputational BiologyEnvironmentExposure toFeverFlow CytometryFluorescence AnisotropyGlobal ChangeGrowthHeat Stress DisordersHeat shock proteinsHeat-Shock ResponseHigh temperature of physical objectImmuneImpairmentIn VitroLuciferasesMeasuresMediatingMethodsModelingMolecular ChaperonesMolecular ProbesNatureOrthologous GenePathogenicityPathway interactionsPhysical condensationPhysiologicalPlayPoly(A)-Binding ProteinsProductionProteinsRNA-Binding ProteinsRecoveryRegulationRepressionResearchResearch PersonnelResourcesRoleSaccharomyces cerevisiaeSaccharomycetalesShapesSignal TransductionStressSystemTemperatureTestingTranscriptTranslatingTranslation InitiationTranslational RegulationTranslational RepressionTranslationsUniversitiesWorkYeastsattenuationbasebiological adaptation to stresscareercell growthdesignenvironmental changefitnessin vivomisfolded proteinprotein aggregationprotein foldingprotein functionprotein misfoldingresponsestoichiometrytranslation assay
项目摘要
Project Summary/Abstract
When cells encounter heat, they undergo a number of archetypal intracellular changes: global
attenuation of translation, synthesis of molecular chaperones, and the formation of intracellular protein
aggregates. These aggregates were long thought to be the result of misfolded proteins, however, recent work
has suggested that these assemblies may be the adaptive result of biomolecular condensation. It has
remained unclear how biomolecular condensation functions to help cells survive heat stress. Here, I propose to
investigate a connection between heat-induced condensation and translation of molecular chaperones.
Previous work has demonstrated that poly(A)-binding protein (Pab1) condenses during heat shock in
yeast and disrupting Pab1 condensation impairs cellular growth during stress, indicating that stress-triggered
condensation of Pab1 is a part of the adaptive stress response. This finding motivated me to investigate why
Pab1 is important for cell growth during stress. Pab1 acts as a translational repressor by binding transcripts
with A-rich 5’ Untranslated Regions (5’UTRs), including its own transcript. Interestingly, the transcripts of
molecular chaperones produced during stress have A-rich 5’UTRs, and these molecular chaperones go on to
re-solubilize Pab1. My preliminary work shows that soluble Pab1 can repress translation of endogenous
transcripts with A-rich 5’UTRs, while Pab1 condensation inhibits this effect. This suggests an autoregulatory
mechanism through which heat-triggered condensation of Pab1 facilitates high level translation of stress-
induced chaperones, whose capacity to re-solubilize Pab1 leads to repressed translation after sufficient
chaperones have been produced.
To test this model, I will probe the molecular basis of Pab1 translational repression using in vitro
translation assays and fluorescence anisotropy. I will also carry out a bioinformatic analysis of A-rich 5’UTRs to
identify sequence features that are conserved and test whether they contribute to Pab1 repression. Next, I will
design yeast strains to perturb Pab1 condensation in vivo to test how this change affects the production of
molecular chaperones. Finally, Pab1 condensation does not completely explain how heat shock transcripts are
specifically translated in the midst of global translational attenuation, so I will investigate how A-rich 5’UTRs
can promote selective translation, using similar in vitro and in vivo methods. My proposed model connects
direct environmental sensing by condensation to the adaptive cellular stress response and helps shape our
understanding of how cells respond to heat in other contexts, such as immune cells in fever.
This research will be done at the University of Chicago with Dr. D. Allan Drummond and will build my
skillset in in vitro, in vivo, and computational biology, preparing me for a career as an independent investigator.
项目摘要/摘要
当细胞遇到热量时,它们会经历一些典型的细胞内变化:全球
翻译的减弱、分子伴侣的合成和胞内蛋白的形成
集合体。这些聚集体长期以来被认为是蛋白质错误折叠的结果,然而,最近的研究
提出这些组装可能是生物分子缩合的适应性结果。它有
目前尚不清楚生物分子缩合是如何帮助细胞在热应激中生存的。在此,我建议
研究分子伴侣的热诱导缩合和翻译之间的联系。
以前的工作已经证明,聚(A)结合蛋白(Pab1)在热休克过程中发生缩合。
酵母菌和破坏Pab1凝聚会在应激期间损害细胞生长,这表明应激触发
Pab1的缩合是适应性应激反应的一部分。这一发现促使我调查为什么
在应激过程中,Pab1对细胞生长起着重要的作用。Pab1通过结合转录本发挥翻译抑制因子的作用
带有富含A的5‘非翻译区(5’UTRs),包括它自己的转录本。有趣的是,
在应激过程中产生的分子伴侣具有富含A的5‘UTRs,这些分子伴侣继续
重新增溶Pab1。我的初步工作表明,可溶性Pab1可以抑制内源性的翻译
转录与富含A的5‘UTRs,而Pab1缩合抑制这一作用。这表明了一种自动调节
Pab1的热引发缩合促进应力的高水平转化的机制-
诱导伴侣蛋白,其重新溶解Pab1的能力导致在足够的时间后抑制翻译
人们已经培育出了伴侣。
为了验证这一模型,我将使用体外实验来探索Pab1翻译抑制的分子基础
翻译分析和荧光各向异性。我还将对富含A的5‘UTRs进行生物信息学分析,以
确定保守的序列特征,并测试它们是否对Pab1抑制起作用。接下来,我会
设计酵母菌株扰乱体内Pab1缩合,以测试这种变化如何影响Pab1的生产
分子伴侣。最后,Pab1凝聚不能完全解释热休克转录本是如何
特别是在全球翻译减弱的情况下,所以我将研究富含A的5‘UTRs是如何
可以促进选择性翻译,使用类似的体外和体内方法。我建议的模型连接
通过凝聚到适应性细胞应激反应的直接环境感知,并帮助塑造我们的
了解细胞在其他环境中对热的反应,例如发烧时的免疫细胞。
这项研究将在芝加哥大学与D·艾伦·德拉蒙德博士一起完成,并将建立我的
在体外、体内和计算生物学方面的技能,为我作为一名独立研究员的职业生涯做好了准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caitlin Wong其他文献
Caitlin Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caitlin Wong', 18)}}的其他基金
Investigating the adaptive role of heat-induced biomolecular condensates in translational regulation
研究热诱导生物分子缩合物在翻译调节中的适应性作用
- 批准号:
10314895 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
Investigating the adaptive role of heat-induced biomolecular condensates in translational regulation
研究热诱导生物分子缩合物在翻译调节中的适应性作用
- 批准号:
10686023 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
相似海外基金
Impact of alternative polyadenylation of 3'-untranslated regions in the PI3K/AKT cascade on microRNA
PI3K/AKT 级联中 3-非翻译区的替代多聚腺苷酸化对 microRNA 的影响
- 批准号:
573541-2022 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
University Undergraduate Student Research Awards
How do untranslated regions of cannabinoid receptor type 1 mRNA determine receptor subcellular localisation and function?
1 型大麻素受体 mRNA 的非翻译区如何决定受体亚细胞定位和功能?
- 批准号:
2744317 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Studentship
MICA:Synthetic untranslated regions for direct delivery of therapeutic mRNAs
MICA:用于直接递送治疗性 mRNA 的合成非翻译区
- 批准号:
MR/V010948/1 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
Research Grant
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10019570 - 财政年份:2019
- 资助金额:
$ 4.68万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10223370 - 财政年份:2019
- 资助金额:
$ 4.68万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10455108 - 财政年份:2019
- 资助金额:
$ 4.68万 - 项目类别:
Synergistic microRNA-binding sites, and 3' untranslated regions: a dialogue of silence
协同的 microRNA 结合位点和 3 非翻译区:沉默的对话
- 批准号:
255762 - 财政年份:2012
- 资助金额:
$ 4.68万 - 项目类别:
Operating Grants
Analysis of long untranslated regions in Nipah virus genome
尼帕病毒基因组长非翻译区分析
- 批准号:
20790351 - 财政年份:2008
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Search for mRNA elements involved in the compatibility between 5' untranslated regions and coding regions in chloroplast translation
寻找参与叶绿体翻译中 5 非翻译区和编码区之间兼容性的 mRNA 元件
- 批准号:
19370021 - 财政年份:2007
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Post-transcriptional Regulation of PPAR-g Expression by 5'-Untranslated Regions
5-非翻译区对 PPAR-g 表达的转录后调控
- 批准号:
7131841 - 财政年份:2006
- 资助金额:
$ 4.68万 - 项目类别: