Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
基本信息
- 批准号:10475089
- 负责人:
- 金额:$ 227.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAD transgenic miceAgeAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAmyloid FibrilsAmyloid beta-ProteinAmyloidosisAstrocytesAutopsyBiological AssayBiologyBrainBrain regionCRISPR/Cas technologyCell Culture TechniquesCellsCharacteristicsClinicalClinical TrialsCoculture TechniquesCognitionComplexDataData SetDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingDiseaseEpigenetic ProcessEtiologyFunctional Magnetic Resonance ImagingFunctional disorderGene ExpressionGenesGeneticGenetic DiseasesGenetic TranscriptionGenomicsHeterogeneityHumanIn VitroIndividualInduced pluripotent stem cell derived neuronsKnock-outKnowledgeLate Onset Alzheimer DiseaseLightMapsMeasuresModelingMolecularMolecular ProfilingMusNeuritesNeurobiologyNeurofibrillary TanglesNeurogliaNeuronsOrganoidsPathway AnalysisPenetrancePerformancePhenotypePopulationProteomicsProtocols documentationQuality ControlRecombinantsRoleSamplingSenile PlaquesSignal TransductionSpecificityStructureSystemTauopathiesTestingThickTransgenic MiceValidationWorkbrain cellcell typeclinical phenotypeclinical prognosiscohortcourse developmentdisorder subtypeexperimental studyextracellularhigh dimensionalityimprovedin vivoindexingindividualized medicineinduced pluripotent stem cellinsightknock-downlarge scale datametabolomicsmolecular imagingmolecular scalemolecular subtypesmouse modelmultidimensional datanetwork modelsneuroimagingnoveloverexpressionpatient subsetsprecision medicinerelating to nervous systemscreeningsingle cell analysissingle-cell RNA sequencingtau-1transcriptome sequencingtranscriptomics
项目摘要
Project Summary
Alzheimer's disease (AD) pathology is characterized by the presence of phosphorylated tau in
neurofibrillary tangles (NFTs), dystrophic neurites and abundant extracellular β-amyloid in senile
plaques. However, the etiology of AD remains elusive, partly due to the wide spectrum of clinical and
neurobiological/neuropathological features in AD patients. Thus, heterogeneity in AD has complicated
the task of discovering disease-modifying treatments and developing accurate in vivo indices for
diagnosis and clinical prognosis. Different approaches have been proposed for AD subtyping, but
they are generally neither suitable for high-dimensional data nor actionable due to the lack of
mechanistic insights. Increased knowledge and understanding of different AD subtypes would shed
light on recently failed clinical trials and provide for the potential to tailor treatments with specificity to
more homogeneous subgroups of patients. By integrating genetic, molecular and neuroimaging data
to more precisely define AD subtypes, we may be able to better discriminate between highly
overlapping clinical phenotypes. Furthermore, the identification of such subtypes may potentially
improve our understanding of its underlying pathomechanisms, prediction of its course, and the
development of novel disease-modifying treatments. In this application, we propose to systematically
identify and characterize molecular subtypes of AD by developing and employing cutting-edge
network biology approaches to multiple existing large-scale genetic, gene expression, proteomic and
functional MRI datasets. We will investigate the functional roles of key drivers underlying predicted
AD subtypes as well as three candidate key drivers from our current AMP-AD consortia work in
control and AD hiPSC-derived neural co-culture systems and then in complex organoids by screening
the predicted transcriptional impact of top key drivers in single cell and cell-population-wide analyses.
Functional assays in each cell type will be used to build evidence for relevance to AD-subtype
phenotypes. Single cell RNA sequencing data will be generated to identify perturbation signatures in
selected drivers that will then be mapped to subtype specific networks to build comprehensive
signaling maps for each driver. The top three most promising drivers of AD subtypes and the three
existing AMP-AD targets will be further validated using a) an independent postmortem cohort, and b)
recombinant mice, including amyloidosis, tauopathy and new “humanized” models.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHELLE E EHRLICH其他文献
MICHELLE E EHRLICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHELLE E EHRLICH', 18)}}的其他基金
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
10214197 - 财政年份:2018
- 资助金额:
$ 227.24万 - 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
10172822 - 财政年份:2018
- 资助金额:
$ 227.24万 - 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
10404989 - 财政年份:2018
- 资助金额:
$ 227.24万 - 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
9788267 - 财政年份:2018
- 资助金额:
$ 227.24万 - 项目类别:
Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease
阿尔茨海默病认知复原力的综合网络建模
- 批准号:
9439453 - 财政年份:2017
- 资助金额:
$ 227.24万 - 项目类别:
Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease
阿尔茨海默病认知弹性的综合网络建模
- 批准号:
10170187 - 财政年份:2017
- 资助金额:
$ 227.24万 - 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
- 批准号:
10251248 - 财政年份:2014
- 资助金额:
$ 227.24万 - 项目类别:
Identification and characterization of receptors targeting VGF-derived peptides.
针对 VGF 衍生肽的受体的鉴定和表征。
- 批准号:
10312413 - 财政年份:2014
- 资助金额:
$ 227.24万 - 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
- 批准号:
10005927 - 财政年份:2014
- 资助金额:
$ 227.24万 - 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
- 批准号:
9922436 - 财政年份:2014
- 资助金额:
$ 227.24万 - 项目类别:
相似海外基金
ENVIRONMENTAL ENRICHMENT EFFECTS IN AD TRANSGENIC MICE
AD 转基因小鼠的环境富集效应
- 批准号:
6932636 - 财政年份:2005
- 资助金额:
$ 227.24万 - 项目类别:
ENVIRONMENTAL ENRICHMENT EFFECTS IN AD TRANSGENIC MICE
AD 转基因小鼠的环境富集效应
- 批准号:
7309938 - 财政年份:
- 资助金额:
$ 227.24万 - 项目类别:














{{item.name}}会员




