Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
基本信息
- 批准号:10251248
- 负责人:
- 金额:$ 184.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAD transgenic miceAgeAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAmyloid FibrilsAmyloid beta-ProteinAmyloidosisAstrocytesAutopsyBiological AssayBiologyBrainBrain regionCRISPR/Cas technologyCell Culture TechniquesCellsCharacteristicsClinicalClinical TrialsCoculture TechniquesCognitionComplexDataData SetDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingDiseaseEpigenetic ProcessEtiologyFunctional Magnetic Resonance ImagingFunctional disorderGene ExpressionGenesGeneticGenetic DiseasesGenetic TranscriptionGenomicsHeterogeneityHumanIn VitroIndividualInduced pluripotent stem cell derived neuronsKnock-outKnowledgeLate Onset Alzheimer DiseaseLightMapsMeasuresModelingMolecularMolecular ProfilingMusNeuritesNeurobiologyNeurofibrillary TanglesNeurogliaNeuronsOrganoidsPathway AnalysisPenetrancePerformancePhenotypePopulationPrognosisProteomicsProtocols documentationQuality ControlRecombinantsRoleSamplingSenile PlaquesSignal TransductionSpecificityStructureSystemTauopathiesTestingThickTransgenic MiceValidationWorkbrain cellcell typeclinical phenotypecohortcourse developmentdisorder subtypeexperimental studyextracellularhigh dimensionalityimprovedin vivoindexingindividualized medicineinduced pluripotent stem cellinsightknock-downlarge scale datametabolomicsmolecular imagingmolecular scalemolecular subtypesmouse modelmultidimensional datanetwork modelsneuroimagingnoveloverexpressionpatient subsetsprecision medicinerelating to nervous systemscreeningsingle cell analysissingle-cell RNA sequencingtau-1transcriptome sequencingtranscriptomics
项目摘要
Project Summary
Alzheimer's disease (AD) pathology is characterized by the presence of phosphorylated tau in
neurofibrillary tangles (NFTs), dystrophic neurites and abundant extracellular β-amyloid in senile
plaques. However, the etiology of AD remains elusive, partly due to the wide spectrum of clinical and
neurobiological/neuropathological features in AD patients. Thus, heterogeneity in AD has complicated
the task of discovering disease-modifying treatments and developing accurate in vivo indices for
diagnosis and clinical prognosis. Different approaches have been proposed for AD subtyping, but
they are generally neither suitable for high-dimensional data nor actionable due to the lack of
mechanistic insights. Increased knowledge and understanding of different AD subtypes would shed
light on recently failed clinical trials and provide for the potential to tailor treatments with specificity to
more homogeneous subgroups of patients. By integrating genetic, molecular and neuroimaging data
to more precisely define AD subtypes, we may be able to better discriminate between highly
overlapping clinical phenotypes. Furthermore, the identification of such subtypes may potentially
improve our understanding of its underlying pathomechanisms, prediction of its course, and the
development of novel disease-modifying treatments. In this application, we propose to systematically
identify and characterize molecular subtypes of AD by developing and employing cutting-edge
network biology approaches to multiple existing large-scale genetic, gene expression, proteomic and
functional MRI datasets. We will investigate the functional roles of key drivers underlying predicted
AD subtypes as well as three candidate key drivers from our current AMP-AD consortia work in
control and AD hiPSC-derived neural co-culture systems and then in complex organoids by screening
the predicted transcriptional impact of top key drivers in single cell and cell-population-wide analyses.
Functional assays in each cell type will be used to build evidence for relevance to AD-subtype
phenotypes. Single cell RNA sequencing data will be generated to identify perturbation signatures in
selected drivers that will then be mapped to subtype specific networks to build comprehensive
signaling maps for each driver. The top three most promising drivers of AD subtypes and the three
existing AMP-AD targets will be further validated using a) an independent postmortem cohort, and b)
recombinant mice, including amyloidosis, tauopathy and new “humanized” models.
项目摘要
阿尔茨海默病(AD)的病理特征是存在磷酸化的tau
老年人神经原纤维缠结、营养不良轴突和丰富的细胞外β-淀粉样蛋白
斑块。然而,阿尔茨海默病的病因仍然难以捉摸,部分原因是临床和
阿尔茨海默病患者的神经生物学/神经病理学特征因此,AD中的异质性变得复杂
发现疾病治疗方法和开发准确的体内指标的任务
诊断和临床预后。对于AD亚型已经提出了不同的方法,但
它们通常既不适合高维数据,也不可行,因为缺乏
机械的洞察力。增加对不同AD亚型的知识和理解
阐明最近失败的临床试验,并提供量身定做具有特异性的治疗方法的可能性
患者亚群的同质性更高。通过整合遗传、分子和神经成像数据
为了更准确地定义AD亚型,我们可能能够更好地区分高度
临床表型重叠。此外,这种亚型的识别可能潜在地
提高我们对其潜在的发病机制,其进程的预测,以及
开发新的治疗疾病的方法。在本申请中,我们建议系统地
开发和利用前沿技术识别和表征AD的分子亚型
网络生物学方法用于多种现有的大规模遗传、基因表达、蛋白质组和
功能磁共振数据集。我们将调查预测背后的关键驱动因素的功能角色
AD子类型以及来自我们当前AMP-AD联盟的三个候选关键驱动因素在
对照和AD-HiPSC来源的神经共培养系统,然后通过筛选在复杂的有机体内
单细胞和全细胞分析中主要关键驱动因素的转录影响预测。
将使用每种细胞类型的功能分析来建立与AD亚型相关的证据
表型。将生成单细胞RNA测序数据以识别
选定的驱动因素,然后将映射到子类型特定网络,以构建全面的
每个司机的信号地图。AD亚型最有希望的三大驱动因素和三大
将使用a)独立的尸检队列和b)进一步验证现有的AMP-AD目标
重组小鼠,包括淀粉样变性、牛磺酸和新的“人性化”模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHELLE E EHRLICH其他文献
MICHELLE E EHRLICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHELLE E EHRLICH', 18)}}的其他基金
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
10214197 - 财政年份:2018
- 资助金额:
$ 184.8万 - 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
10172822 - 财政年份:2018
- 资助金额:
$ 184.8万 - 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
10404989 - 财政年份:2018
- 资助金额:
$ 184.8万 - 项目类别:
Systems modeling of shared and distinct molecular mechanisms underlying comorbid Major Depressive Disorder and Alzheimer's disease
对共病重度抑郁症和阿尔茨海默病潜在的共享和不同分子机制进行系统建模
- 批准号:
9788267 - 财政年份:2018
- 资助金额:
$ 184.8万 - 项目类别:
Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease
阿尔茨海默病认知复原力的综合网络建模
- 批准号:
9439453 - 财政年份:2017
- 资助金额:
$ 184.8万 - 项目类别:
Integrative Network Modeling of Cognitive Resilience to Alzheimer's Disease
阿尔茨海默病认知弹性的综合网络建模
- 批准号:
10170187 - 财政年份:2017
- 资助金额:
$ 184.8万 - 项目类别:
Identification and characterization of receptors targeting VGF-derived peptides.
针对 VGF 衍生肽的受体的鉴定和表征。
- 批准号:
10312413 - 财政年份:2014
- 资助金额:
$ 184.8万 - 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
- 批准号:
10005927 - 财政年份:2014
- 资助金额:
$ 184.8万 - 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
- 批准号:
10475089 - 财政年份:2014
- 资助金额:
$ 184.8万 - 项目类别:
Integrative Network Biology Approaches to Identify, Characterize and Validate Molecular Subtypes in Alzheimer's Disease
识别、表征和验证阿尔茨海默病分子亚型的综合网络生物学方法
- 批准号:
9922436 - 财政年份:2014
- 资助金额:
$ 184.8万 - 项目类别:
相似海外基金
ENVIRONMENTAL ENRICHMENT EFFECTS IN AD TRANSGENIC MICE
AD 转基因小鼠的环境富集效应
- 批准号:
6932636 - 财政年份:2005
- 资助金额:
$ 184.8万 - 项目类别:
ENVIRONMENTAL ENRICHMENT EFFECTS IN AD TRANSGENIC MICE
AD 转基因小鼠的环境富集效应
- 批准号:
7309938 - 财政年份:
- 资助金额:
$ 184.8万 - 项目类别:














{{item.name}}会员




