Investigating neural substrates of generalization from past experience

根据过去的经验研究泛化的神经基础

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT: In new settings, we have a remarkable ability to generalize from prior learning to help us achieve our goals. This capacity is thought to depend on our ability to represent the common relationships present in related experiences, such as the series of steps involved in grocery shopping at any one of a variety of supermarkets. These context- generalized representations of a task have been termed schemas. In the brain, schemas are thought to be represented by neural ensembles that encode a task similarly across contexts. Recent work has identified schema representations in the prefrontal cortex (PFC). How these schema representations form and support rapid learning in new contexts, however, is not well understood. A well-established theory of long-term memory formation known as systems consolidation theory provides a model for how schema representations may arise in the brain. According to this theory, the hippocampus (HPc) rapidly encodes memories of specific episodes in new contexts. In periods of rest that follow, these HPc memories are reactivated, and this is thought to result in the long-lasting strengthening of corresponding memory traces within and across neocortex. The resulting neocortical memories are thought to emphasize common features across contexts, providing a basis for schema representation. Our overarching hypothesis based on the theory of systems consolidation is that HPc memory reactivation promotes the formation of schema representations in PFC (Aims 1 and 3), and expression of these representations in new contexts in turn enables rapid learning (Aims 2 and 3). To test this hypothesis, we will pair a rat model of learning in new contexts wherein rats exhibit rapid learning given prior experience, with simultaneous recordings of PFC and HPc neural ensembles (Aims 1–3) and causal intervention studies (Aim 3). Completion of these Aims has the potential to yield fundamental insights into the neural substrates of generalization from past experience. Our findings will additionally provide important evidence for or against longstanding predictions of systems consolidation theory that have so far been difficult to test in the absence of distributed simultaneous recordings. This study will be carried out in the lab of my research sponsor, Dr. Loren Frank, at the University of California, San Francisco (UCSF). The Frank lab is located in Sandler Neurosciences Center, which is home to a highly innovative and collaborative community of faculty and students pursuing neuroscience questions. My training plan under this fellowship will prepare me for an independent career as an academic physician scientist with the long-term goal of revealing neural computations underlying cognitive processes. In addition to the proposed research, this preparation will be achieved through rigorous quantitative coursework, planned engagement with vibrant intellectual communities, and clinically geared activities.
项目总结/文摘:

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Ann Guidera其他文献

Jennifer Ann Guidera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Ann Guidera', 18)}}的其他基金

Investigating neural substrates of generalization from past experience
根据过去的经验研究泛化的神经基础
  • 批准号:
    10389027
  • 财政年份:
    2021
  • 资助金额:
    $ 3.93万
  • 项目类别:
Investigating neural substrates of generalization from past experience
根据过去的经验研究泛化的神经基础
  • 批准号:
    10676794
  • 财政年份:
    2021
  • 资助金额:
    $ 3.93万
  • 项目类别:

相似海外基金

Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
  • 批准号:
    520728-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 3.93万
  • 项目类别:
    University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    10368760
  • 财政年份:
    2017
  • 资助金额:
    $ 3.93万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    10669539
  • 财政年份:
    2017
  • 资助金额:
    $ 3.93万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    9570142
  • 财政年份:
    2017
  • 资助金额:
    $ 3.93万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    9915803
  • 财政年份:
    2017
  • 资助金额:
    $ 3.93万
  • 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
  • 批准号:
    10259999
  • 财政年份:
    2017
  • 资助金额:
    $ 3.93万
  • 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
  • 批准号:
    21580130
  • 财政年份:
    2009
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
  • 批准号:
    300985-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
  • 批准号:
    300985-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了