Thin, High-Density, High-Performance, Depth and Surface Microelectrodes for Diagnosis and Treatment of Epilepsy
用于癫痫诊断和治疗的薄型、高密度、高性能、深度和表面微电极
基本信息
- 批准号:10477274
- 负责人:
- 金额:$ 250.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnatomyAnimal ModelAnimal TestingAnimalsAreaAuthorization documentationBiological MarkersBiophysicsBrainBrain imagingBrain regionCaliberChargeChronicClinicalClinical TrialsComputer softwareCraniotomyDataData AnalysesDevelopmentDevice or Instrument DevelopmentDevicesDiagnosisDiagnosticElectrocorticogramElectrodesElectronicsElectrophysiology (science)EpilepsyExcisionFamily suidaeFeasibility StudiesFilmGenerationsGoalsGoldGrantHigh Frequency OscillationHistologicHumanImpairmentImplantIncidenceInjectionsInstitutional Review BoardsIntractable EpilepsyLaboratoriesLanguageMapsMeasuresMedical DeviceMethodsMicroelectrodesMicrofabricationMonitorMotorMovementNeurostimulation procedures of spinal cord tissueOperative Surgical ProceduresOutcomePathologicPatientsPerformancePhasePlatinumPreclinical TestingProceduresProtocols documentationRadioReactionResearchResolutionSafetySeizuresSignal TransductionSourceStructureSurfaceSystemSystems DevelopmentSystems IntegrationTechnologyTestingTherapeuticTherapeutic procedureThinnessTissuesVisionVisualizationanimal safetybasebiomaterial compatibilitybrain machine interfacebrain tissueclinical biomarkerscraniumdata exchangedensityefficacy testingelectric impedanceergonomicsintegrated circuitmanufacturing processmeetingsminiaturizeminimally invasivenanorodneuroregulationnovelparylene Cphase 2 testingpre-clinicalpreservationrelating to nervous systemsafety testingsoftware developmentsuccesstransmission processwirelesswireless sensor
项目摘要
ABSTRACT
The goal of this project is to significantly advance the field of acute and semichronic epilepsy monitoring
using novel, high-resolution electrocorticography (ECoG) record/stimulate grids (4096/256 channels,
respectively) and stereoelectroencephalography (sEEG) depth electrodes (120/8 micro/macro) with full wireless
data and power transfer. This project builds on our previous success in conducting the first-ever human trials for
acute mapping of eloquent brain tissue with multi-thousand channel microelectrode grids. The proposed system
encompasses multiple transformative technological approaches, including: (1) leveraging advanced thin-film
microfabrication on 8” diameter substrates, thus permitting long integrated connectorization from thousands of
channels; (2) exploiting a newly developed platinum nanorod (PtNR) microelectrode technology with excellent
low impedance, high charge-injection-capacity (4.4mC/cm2), stability, and biocompatibility; and (3) using a thin
(~10μm) parylene C substrate that is compliant to brain movements, conformal to brain curvature, and
transparent, permitting easier visualization of brain anatomy during the acute mapping. Further, (4) the grids
developed for this project are modular and can be trimmed to fit different sizes of craniotomies, and (5) this
system offers a new generation of minimally invasive sEEG electrodes with easily reconfigurable microcontact
distribution in different regions of the brain Our proposed system also (6) employs state-of-the-art acquisition
electronics with a miniaturized 1024ch neural interface system-on-chip and radio transmission of data and power,
enabling fully wireless monitoring that eliminates wire externalization, and (7) deploys multi-screen and multi-
window visualization of the whole repertoire of electrophysiological activity, with the option to display and interpret
signals in standard fashion.
Our goal is to demonstrate in the semichronic clinical setting a high-definition display of traditional and
emerging clinical biomarkers for epilepsy monitoring and treatment. To achieve this goal, we will pursue in Aim
1 regulatory input from the FDA and scale our grids under good quality laboratory practices (GLP), and perform
benchtop testing and hardware and software development under a quality management system. In Aim 2, we
will perform semichronic animal testing under GLP to demonstrate safety, tolerability, and efficacy of the new
epilepsy-monitoring system. In Aim 3, we will will perform pre-clinical and human intraoperative recordings with
appropriate IRB authorization. We will pursue FDA clearance for semichronic implants in Aim 4, and transition
Aim 5 to semichronic epilepsy monitoring in patients with intractable epilepsy.
The methods employed in device and system development, surgical approaches, electrophysiology, and data
analysis will not only advance functional and epilepsy monitoring but will also have significant implications for
numerous applications in neuromodulation/therapeutic stimulation, minimally destructive brain-machine
interfaces, and spinal cord stimulation.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shadi Dayeh其他文献
Shadi Dayeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shadi Dayeh', 18)}}的其他基金
Thin, High-Density, High-Performance, Depth and Surface Microelectrodes for Diagnosis and Treatment of Epilepsy
用于癫痫诊断和治疗的薄型、高密度、高性能、深度和表面微电极
- 批准号:
10294893 - 财政年份:2021
- 资助金额:
$ 250.01万 - 项目类别:
Integration of High Definition Display Technologies with Platinum Nanorod Microelectrodes for Large Scale in-vivo Recording and Stimulation
高清显示技术与铂纳米棒微电极的集成,用于大规模体内记录和刺激
- 批准号:
10293899 - 财政年份:2021
- 资助金额:
$ 250.01万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 250.01万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 250.01万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 250.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 250.01万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 250.01万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 250.01万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 250.01万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 250.01万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 250.01万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 250.01万 - 项目类别:
Studentship