Predicting and controlling polygenic health traits using probabilistic models and evolution-inspired gene editing

使用概率模型和进化启发的基因编辑来预测和控制多基因健康特征

基本信息

项目摘要

Predicting and controlling polygenic health traits using probabilistic models and evolution-inspired gene editing PROJECT SUMMARY: New mutations are a source of adaptive evolutionary novelty but can also cause genetic diseases and cancer. While we can now correct detrimental mutations using CRISPR/Cas9 technologies, DNA modifications can have unintended consequences through seemingly unpredictable epistatic and environmental interactions, as could well be the case for the presumed HIV-resistance mutations in CCR5 recently CRISPRed into humans. In higher eukaryotes, fitness or health traits such as adaptability or disease susceptibility appear to be controlled by numerous mutations acting in concert – they are so-called polygenic or complex traits. Such mutations might even manifest detrimental in some environments while beneficial in others, therefore also called antagonistic pleiotropic. The main goal of the proposed work is to use the versatile model plant Arabidopsis thaliana to enhance the predictability and control of the polygenic and antagonistic fitness effects of mutations. Results from this project will provide universal principles to deepen our understanding of complex human genetic disease and inform the safe correction or avoidance of harmful mutations in the future. Specifically, I will pursue the following aims: 1) predicting polygenic fitness effects across environments, 2) improving fitness by controlling deleterious and beneficial mutations using multiplexed genome editing and mutator alleles. Arabidopsis thaliana is an ideal model to tease apart the fitness effects of mutations in complex environments due to its high malleability to engineered mutations, and its extensive community and resources. The 1001 Arabidopsis Genome Project and a genome-wide Knock-Out (KO) collection allow for quantifying fitness of thousands of publicly available natural and artificial mutations across environments. Building a global network of Arabidopsis researchers, we have started an experiment with the same natural strains in 45 locations, which I will use to quantify environment-associated mutation effects. Integrating this with information of relevant KO lines, I will build on my previous predictive models to understand the effects of mutations on fitness across environments, and the features that make them deleterious. Such a deep understanding of mutation effects will ultimately allow us to alter fitness in predictable ways. I will test this in two ways: First, using multiplexed CRISPR base-edits, I will substitute detrimental for beneficial mutations. Second, to study how accumulating mutations impact fitness and to learn how to correct this, I will engineer plants with known mutator and anti-mutator alleles. These alleles, associated with the DNA repair machinery and cancer susceptibility, can increase or decrease the mutation rate in A. thaliana, helping us explore mutation accumulations up to lethal levels in many mammals. Overall, my research will provide fundamental insights into the genetic control of complex fitness traits, ultimately paving the way to improving personalized genomic disease risk predictions and safely probing the limits of poly-gene therapies.
利用概率模型和进化启发基因预测和控制多基因健康性状

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moises Exposito-Alonso其他文献

Moises Exposito-Alonso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moises Exposito-Alonso', 18)}}的其他基金

Predicting and controlling polygenic health traits using probabilistic models and evolution-inspired gene editing
使用概率模型和进化启发的基因编辑来预测和控制多基因健康特征
  • 批准号:
    10005708
  • 财政年份:
    2020
  • 资助金额:
    $ 40.38万
  • 项目类别:
Predicting and controlling polygenic health traits using probabilistic models and evolution-inspired gene editing
使用概率模型和进化启发的基因编辑来预测和控制多基因健康特征
  • 批准号:
    10260453
  • 财政年份:
    2020
  • 资助金额:
    $ 40.38万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 40.38万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 40.38万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 40.38万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 40.38万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 40.38万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
    Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 40.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了