Project 3 - Development and investigation of murine models of channelopathy-associated epilepsy
项目 3 - 通道病相关癫痫小鼠模型的开发和研究
基本信息
- 批准号:10477456
- 负责人:
- 金额:$ 54.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAdvanced DevelopmentAffectAmericanAnimalsAnticonvulsantsBrainBrain regionCell modelCellsClinicalCollaborationsCommunitiesDataDetectionDevelopmentDiseaseElectrophysiology (science)EpilepsyEquilibriumEtiologyEvaluationFunctional disorderGenesGeneticGoalsHippocampus (Brain)ImpairmentIn VitroInduced pluripotent stem cell derived neuronsInterneuronsInvestigationIon ChannelIon Channel GatingModelingMusMutationNeocortexNeonatalNeurologicNeuronal DysfunctionNeuronsPathogenesisPatientsPatternPharmaceutical PreparationsPharmacologyPhenotypePopulationPotassiumPrecision therapeuticsPropertyRegulatory ElementResearchSeizuresSeriesSliceSodiumStandardizationSyndromeSystemTestingTherapeuticTransgenic MiceTranslationsVariantbasebiophysical propertiescell typeclinically actionableearly onseteffectiveness evaluationepileptic encephalopathiesgenetic architecturein vivoin vivo Modelin vivo evaluationinfancyinsightmouse modelnervous system disorderprecision medicinepredictive modelingpreventresponsesynergismvoltage
项目摘要
PROJECT SUMMARY – PROJECT 3
Epilepsy is a common neurological disorder that affects over 3 million Americans and has a substantial genetic
contribution to its etiology. Mutation of voltage-gated ion channel genes (‘Channelopathies’), particularly
voltage-gated sodium (NaV) and potassium (KV) channel genes, have emerged as a major cause of early onset
epileptic encephalopathies. These severe epilepsy syndromes are often difficult to treat with existing therapies
and are associated with adverse neurodevelopmental sequelae, making them a high priority for better
treatment approaches like precision medicine. Functional characterization of a small number of epilepsy-
associated voltage-gated ion channel mutations in heterologous expression systems have demonstrated a
range of dysfunction, but it is presently difficult to extrapolate these results to in vivo effects. A major goal of
our Center is to determine how well in vitro cellular models predict neuronal dysfunction and pharmacological
responses in an intact brain. To accomplish this goal, Project 3 will focus on a series of representative mouse
models with NaV and KV channel variants that cause prototypical patterns of dysfunction. We hypothesize that
differences in the relative contribution of specific channels to excitability in various cell types within neuronal
networks determine the net effect on excitation-inhibition balance and influence pharmacological response.
Mouse models provide the opportunity to evaluate the effect of channel variants at the whole animal, cellular
and network levels, as well as to investigate pharmacological responses. In Aim 1, we will develop mouse
models to investigate NaV and KV channel variants associated with early onset epileptic encephalopathy.
Mouse lines will be evaluated for neurological phenotypes and pharmacological response in vivo. In Aim 2, we
will determine the impact of NaV and KV channel variants on channel properties and intrinsic cell excitability in
acutely dissociated neurons isolated from mouse models, and then determine the effectiveness of
pharmacological agents at normalizing channel activity and/or cell excitability in these neurons. These results
will be compared with similar recordings from heterologous expression systems (Project 1) and patient-specific
iPSC-derived neurons (Project 2) to establish important correlations between in vitro and in vivo models. In
Aim 3, we will determine the impact of NaV and KV channel variants on intrinsic properties of neurons and
consequent effects on network activity in brain slices, and then determine the effectiveness of pharmacological
agents at normalizing aberrant cellular and network excitability. Results from Project 3 will provide mechanistic
insight into the effects of channel dysfunction in intact brains, and determine therapeutic strategies that
normalize excitation-inhibition balance and prevent/reduce seizures. Synergy between this project and Projects
1 and 2 include cross-platform comparisons of the same channelopathy-associated epilepsy variants, which
will facilitate translation of results into valuable information for implementation of precision medicine in this
common neurological disorder.
项目摘要--项目3
癫痫是一种常见的神经系统疾病,影响着300多万美国人,并有大量的遗传因素
对其病因学的贡献。电压门控离子通道基因突变(通道病),特别是
电压门控钠(NAV)和钾(KV)通道基因已成为早发的主要原因
癫痫性脑病。这些严重的癫痫综合征通常很难用现有的治疗方法来治疗。
并与不利的神经发育后遗症有关,使它们成为改善的高度优先事项
治疗方法包括精准医学。少数癫痫的功能特征-
异源表达系统中相关的电压门控离子通道突变表明
一系列的功能障碍,但目前很难推断这些结果对体内的影响。的一个主要目标
我们的中心是确定体外细胞模型预测神经元功能障碍和药理学的效果如何
在一个完整的大脑中做出反应。为了实现这一目标,Project 3将专注于一系列具有代表性的鼠标
带有NAV和KV通道变异的模型,导致典型的功能障碍模式。我们假设
神经元内不同类型细胞中特定通道对兴奋性的相对贡献的差异
网络决定了兴奋-抑制平衡的净效应,并影响药理反应。
小鼠模型提供了评估通道变异在整个动物细胞中的作用的机会
和网络层面,以及调查药理反应。在目标1中,我们将开发鼠标
研究NAV和KV通道变异与早发性癫痫脑病相关的模型。
小鼠品系将在体内进行神经学表型和药理反应的评估。在目标2中,我们
将确定NAV和KV通道变异对通道特性和固有细胞兴奋性的影响
从小鼠模型中分离出急性分离的神经元,然后确定
使这些神经元的通道活动和/或细胞兴奋性正常化的药物。这些结果
将与来自异源表达系统(项目1)和患者特定的类似记录进行比较
IPSC来源的神经元(项目2)在体外和体内模型之间建立重要的相关性。在……里面
目的3,我们将确定NAV和KV通道变异对神经元内在特性的影响和
继而影响脑片中的网络活动,进而决定其药理作用的有效性
使异常的细胞和网络兴奋性正常化的药物。项目3的结果将提供机械性
洞察完整大脑中经络功能障碍的影响,并确定治疗策略
使兴奋-抑制平衡正常化,预防/减少癫痫发作。本项目与项目之间的协同效应
1和2包括相同通道病相关癫痫变种的跨平台比较,
将有助于将结果转化为有价值的信息,以便在
常见的神经性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer A Kearney其他文献
Jennifer A Kearney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer A Kearney', 18)}}的其他基金
Genetic Mapping of Modifier Loci in a Mouse Model KCNB1 Encephalopathy
KCNB1 脑病小鼠模型修饰位点的遗传图谱
- 批准号:
10753301 - 财政年份:2023
- 资助金额:
$ 54.41万 - 项目类别:
Development of a novel anti-neuroinflammatory experimental therapeutic for epilepsy and Alzheimer's risk
开发一种针对癫痫和阿尔茨海默病风险的新型抗神经炎症实验疗法
- 批准号:
10255597 - 财政年份:2021
- 资助金额:
$ 54.41万 - 项目类别:
Project 3 - Development and investigation of murine models of channelopathy-associated epilepsy
项目 3 - 通道病相关癫痫小鼠模型的开发和研究
- 批准号:
10247560 - 财政年份:2018
- 资助金额:
$ 54.41万 - 项目类别:
Combined Approach to Genetic Modifiers of Inherited Epilepsy
遗传性癫痫基因修饰的综合方法
- 批准号:
9021876 - 财政年份:2014
- 资助金额:
$ 54.41万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 54.41万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 54.41万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 54.41万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 54.41万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 54.41万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 54.41万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 54.41万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 54.41万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 54.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 54.41万 - 项目类别:
Standard Grant














{{item.name}}会员




