Bridging the Gap between Genomics and Clinical Outcomes in CHD
缩小先心病基因组学与临床结果之间的差距
基本信息
- 批准号:10477466
- 负责人:
- 金额:$ 41.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Artificial IntelligenceArtificial Intelligence platformBayesian NetworkBioinformaticsChildhoodClinicalClinical DataClinical ResearchClinical and Translational Science AwardsCodeCollaborationsComplexCustomDataData SetDependenceDiagnosticDisease OutcomeElectronic Health RecordFosteringFoundationsGenderGenesGenomicsGenotypeGoalsHeartInfrastructureInstitutionInterdisciplinary StudyInternetKnowledgeMethodologyModelingMulticenter StudiesNational Heart, Lung, and Blood InstituteNetwork-basedOnline SystemsOutcomeOutcomes ResearchPathway interactionsPatientsPediatric Cardiac Genomics ConsortiumPediatric cardiologyPhenotypeReadabilityRecording of previous eventsResearchResearch PersonnelResourcesRisk FactorsScientistSiteSocietiesStandard ModelTestingTherapeuticThoracic Surgical ProceduresTrainingTranslatingUtahVisionVisitWorkbaseclinical careclinical databasecomorbiditycongenital heart disorderdata infrastructuredata resourcedesigngene functiongenomic dataimprovedinnovationmembernext generationnoveloutcome predictionpatient orientedpredict clinical outcomeprogramsrelational databaserepositoryskillssurgery outcometool
项目摘要
PROJECT SUMMARY/ABSTRACT
The NHLBI has invested extensively in the Pediatric Cardiac Genomics Consortium (PCGC), recognizing that
translating genomic discoveries into optimized management and therapeutic strategies for congenital heart
disease (CHD) can only be achieved in the context of multi-center, collaborative research. Currently, the PCGC
is lacking two fundamental capabilities that hinder its ability to define the genomic basis for CHD outcomes: (1)
a robust mechanism for extracting pertinent, machine-readable clinical data from Electronic Health Records
(EHRs) across multiple institutions; and (2) a robust Artificial Intelligence (AI) platform that is capable of teasing
apart the complex interplay between maternal factors, phenotypes, genotypes, gene functions and clinical
outcomes. Here, we propose innovative solutions to these challenges, by assembling teams of content experts
to leverage existing infrastructure to extract relevant outcomes directly from the EHR of participating PCGC
Centers and by designing best-practice AI tools for outcomes research. Our principal goal is provide the vision,
infrastructure and expertise to collaboratively empower CHD outcomes research, foster knowledge exchange,
and train the next generation of genomic scientists. We propose to leverage existing data infrastructure to obtain
Electronic Health Records (EHR) and other clinical variables at scale by partnering with other research networks
to create a PCGC Data Resource. Using this resource, we will create and deploy a platform of Artificial
Intelligence (AI)-based predictors for CHD outcomes research, with the goal of translating genomic discoveries
into improved management and therapeutic strategies for CHD.
项目摘要/摘要
NHLBI已对儿科心脏基因组学联盟(PCGC)进行了广泛投资,认识到
将基因组发现转化为先天性心脏病的优化管理和治疗策略
疾病(CHD)只能在多中心、协作研究的背景下实现。目前,盈科委员会
缺乏两个基本能力,阻碍了其确定冠心病结果的基因组基础的能力:(1)
从电子健康记录中提取相关的、机器可读的临床数据的健壮机制
跨多个机构的(EHR);以及(2)能够逗乐的强大的人工智能(AI)平台
除了母体因素、表型、基因类型、基因功能和临床之间的复杂相互作用
结果。在这里,我们通过集合内容专家团队,为这些挑战提出创新的解决方案
利用现有基础设施直接从参与的PCGC的EHR中获取相关成果
并通过设计用于成果研究的最佳实践人工智能工具。我们的主要目标是提供愿景,
基础设施和专业知识,以协作方式增强CHD成果研究,促进知识交流,
并培养下一代基因组科学家。我们建议利用现有的数据基础设施来获得
电子健康记录(EHR)和其他临床变量的规模,通过与其他研究网络合作
要创建PCGC数据资源,请执行以下操作。利用这一资源,我们将创建和部署一个人工智能平台
基于智能(AI)的CHD结局研究预测因子,目标是将基因组发现转化为
改善对冠心病的管理和治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARTIN TRISTANI-FIROUZI其他文献
MARTIN TRISTANI-FIROUZI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARTIN TRISTANI-FIROUZI', 18)}}的其他基金
A Novel Role for NFATC1 in Modulating Cardiac Excitability
NFATC1 在调节心脏兴奋性中的新作用
- 批准号:
10653775 - 财政年份:2020
- 资助金额:
$ 41.94万 - 项目类别:
A Novel Role for NFATC1 in Modulating Cardiac Excitability
NFATC1 在调节心脏兴奋性中的新作用
- 批准号:
10026527 - 财政年份:2020
- 资助金额:
$ 41.94万 - 项目类别:
A Novel Role for NFATC1 in Modulating Cardiac Excitability
NFATC1 在调节心脏兴奋性中的新作用
- 批准号:
10449135 - 财政年份:2020
- 资助金额:
$ 41.94万 - 项目类别:
Integrating Genomic and Clinical Approaches to Sudden Death in the Young
结合基因组学和临床方法治疗年轻人猝死
- 批准号:
9242064 - 财政年份:2016
- 资助金额:
$ 41.94万 - 项目类别:
Bridging the Gap between Genomics and Clinical Outcomes in CHD
缩小先心病基因组学与临床结果之间的差距
- 批准号:
8950472 - 财政年份:2015
- 资助金额:
$ 41.94万 - 项目类别:
Bridging the Gap between Genomics and Clinical Outcomes in CHD
缩小先心病基因组学与临床结果之间的差距
- 批准号:
10237337 - 财政年份:2015
- 资助金额:
$ 41.94万 - 项目类别:
Bridging the Gap between Genomics and Clinical Outcomes in CHD
缩小先心病基因组学与临床结果之间的差距
- 批准号:
9123653 - 财政年份:2015
- 资助金额:
$ 41.94万 - 项目类别:
Bridging the Gap between Genomics and Clinical Outcomes in CHD
缩小先心病基因组学与临床结果之间的差距
- 批准号:
9324036 - 财政年份:2015
- 资助金额:
$ 41.94万 - 项目类别:
Bridging the Gap between Genomics and Clinical Outcomes in CHD
缩小先心病基因组学与临床结果之间的差距
- 批准号:
10027913 - 财政年份:2015
- 资助金额:
$ 41.94万 - 项目类别:
Voltage Sensor Movement in the HERG Potassium Channel
HEG 钾通道中的电压传感器移动
- 批准号:
7340392 - 财政年份:2004
- 资助金额:
$ 41.94万 - 项目类别:
相似海外基金
Utilising alternative data to develop a machine learning-based artificial intelligence platform for real-time KPI tracking of UK companies for fundamental investors
利用另类数据开发基于机器学习的人工智能平台,为基本面投资者实时跟踪英国公司的 KPI
- 批准号:
10057969 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Collaborative R&D
SBIR Phase I: Artificial intelligence platform for secure, collaborative learning across medical institutions
SBIR 第一阶段:用于跨医疗机构安全协作学习的人工智能平台
- 批准号:
2136775 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别:
Standard Grant
Artificial Intelligence platform for Human Capital Management in Healthcare
医疗保健人力资本管理人工智能平台
- 批准号:
10043194 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别:
Grant for R&D
Towards the generation of an artificial intelligence platform for highly specific CRISPR/Cas9 genome editing experimental design
致力于打造用于高度特异性 CRISPR/Cas9 基因组编辑实验设计的人工智能平台
- 批准号:
534807-2019 - 财政年份:2021
- 资助金额:
$ 41.94万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
I-Corps: Artificial intelligence platform to provide customized power management solutions
I-Corps:提供定制电源管理解决方案的人工智能平台
- 批准号:
2124816 - 财政年份:2021
- 资助金额:
$ 41.94万 - 项目类别:
Standard Grant
Towards the generation of an artificial intelligence platform for highly specific CRISPR/Cas9 genome editing experimental design
致力于打造用于高度特异性 CRISPR/Cas9 基因组编辑实验设计的人工智能平台
- 批准号:
534807-2019 - 财政年份:2020
- 资助金额:
$ 41.94万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
SBIR Phase I: Artificial Intelligence Platform for Peptide Drug Discovery
SBIR第一期:肽药物发现的人工智能平台
- 批准号:
2014327 - 财政年份:2020
- 资助金额:
$ 41.94万 - 项目类别:
Standard Grant
Developing a Big Data artificial intelligence platform to assist the hospitality SME sector to achieve a green recovery from COVID-19 by reducing energy consumption, identifying wastage, controlling costs and becoming more resilient.
开发大数据人工智能平台,通过减少能源消耗、识别浪费、控制成本和增强弹性,协助酒店业中小企业从 COVID-19 中实现绿色复苏。
- 批准号:
82218 - 财政年份:2020
- 资助金额:
$ 41.94万 - 项目类别:
Small Business Research Initiative
A retrainable, smart-camera, vision system for agriculture - SKAi, the SoilEssentials KORE Artificial Intelligence platform
用于农业的可重新训练的智能相机视觉系统 - SKAi,SoilEssentials KORE 人工智能平台
- 批准号:
105154 - 财政年份:2019
- 资助金额:
$ 41.94万 - 项目类别:
Collaborative R&D
Towards the generation of an artificial intelligence platform for highly specific CRISPR/Cas9 genome editing experimental design
致力于打造用于高度特异性 CRISPR/Cas9 基因组编辑实验设计的人工智能平台
- 批准号:
534807-2019 - 财政年份:2019
- 资助金额:
$ 41.94万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




