The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
基本信息
- 批准号:10477434
- 负责人:
- 金额:$ 58.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-06 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAmplifiersAneurysmAortaAortic AneurysmAortic Arch SyndromesAortitisArteriesAutoimmuneAutoimmune DiseasesAutomobile DrivingBiological ModelsBlindnessBlood VesselsCD4 Positive T LymphocytesCell Differentiation processCell physiologyCellsChimera organismCitric Acid CycleClinicalComplicationCytokinesisDNA DamageDataDefectDevelopmentDiseaseDissectionEffector CellElectron TransportEndothelial CellsEnzymesEventGiant CellsGranulomatous ArteritisHumanHyperplasiaImmuneImmune responseImmune systemImmunityIn VitroInflammatoryInflammatory InfiltrateInterferonsInterleukin-17LeadLifeMapsMeasuresMedialMediatingMessenger RNAMetabolicMitochondriaModificationMolecularMusNF-kappa BNOTCH1 geneNotch Signaling PathwayNuclearOncogenesOrganParalysedPathogenicityPathologicPathway interactionsPatientsPhenotypePopulationProcessProcollagen-Proline DioxygenaseProductionProliferatingProteinsRNARNA-Binding ProteinsResourcesRoleSecond Messenger SystemsSignal TransductionSiteStrokeSuccinate DehydrogenaseSuccinatesT-LymphocyteTNF geneTemporal ArteritisTestingThinnessTissuesTrainingVascularizationVasculitisVeno-Occlusive DiseaseWorkalpha ketoglutarateangiogenesisautoinflammatorybench to bedsidecohortdesigneffector T cellexperimental studyfactor Ain vivoin vivo Modelinhibitorinterleukin-22ketoglutarate dehydrogenaseloss of functionmRNA Stabilitymacrophagemouse modelnew technologynotch proteinnovel markernovel therapeutic interventionnuclear divisionresponsetherapeutic targettranscription factorvascular inflammation
项目摘要
Project Summary
Giant Cell Arteritis (GCA) is an autoimmune and autoinflammatory disease which targets the aorta and its major
branch vessels. GCA causes vaso-occlusive disease, leading to blindness and stroke. About half of the patients
develop GCA aortitis, a potentially life-threatening complication due to aortic dissection and aneurysm formation.
The underlying disease process is a granulomatous arteritis, with CD4 T cells, macrophages and multinucleated
giant cells infiltrating into the vessel wall, eliciting maladaptive wall remodeling with neoangiogenesis and lumen-
occlusive intimal hyperplasia.
We have identified aberrant expression of the oncogene NOTCH1 in CD4 T cells as a key abnormality in the
immune system of GCA patients. Here, we will examine the hypothesis that NOTCH signaling transforms
protective immunity into pathogenic immunity by suppressing the mitochondrial enzyme succinate
dehydrogenase (SDH) and truncating the tricarboxylic acid (TCA) cycle. Fragmentation of the TCA cycle
then leads to the accumulation of the metabolic intermediate succinate, which is released into the tissue
site and functions as a second messenger. We propose that succinate secreted by NOTCH1hi SDHlo CD4
T cells targets surrounding cells to redirect T effector cell differentiation, to induce multinucleated
macrophages and to promote microvascular neoangiogenesis. We have assembled key enabling resources
to mechanistically study how NOTCH-instructed succinate release enhances vascular inflammation; including a
large cohort of clinically well phenotyped GCA patients and a chimeric mouse model in which vasculitis is induced
in engrafted human arteries to corroborate in vitro data by in vivo studies. Aim 1 will define the molecular
mechanisms leading to NOTCH-dependent SDH loss-of-function, building on preliminary studies that implicate
RNA-binding proteins in regulating SDH mRNA stability through N6-methyladenosine modifications. Aim 2A
examines mechanistically how succinate reprograms T effector cell differentiation. Experiments are designed to
investigate how succinate paralyzes the NF-kappaB inhibitor A20/TNFAIP3 to unleash NF-kappaB signaling and
induce polyfunctional effector T cells (Thpoly), including T cells that co-produce IFN-, IL-17, TNF-α, IL-21 and
IL-22. Aim 2B will determine how NOTCH-instructed succinate alters macrophage function, specifically by
driving formation of tissue-destructive multinucleated giant cells. We will delineate how succinate elicits a robust
DNA damage response and how it promotes nuclear division and halts cytokinesis by interfering with the spindle
assembly checkpoint. Aim 2C is focused on succinate’s role in inducing a pro-angiogenic endothelial cell (EC)
phenotype and will explore how succinate-trained EC migrate, proliferate, and lose their barrier function. Aim 3
will bridge from the bench to the bedside and will test whether the suppression of succinate production by
blocking the upstream enzyme a-ketoglutarate dehydrogenase can successfully treat vasculitis in vivo.
项目摘要
巨细胞动脉炎(GCA)是一种自身免疫性和自身炎症性疾病,其靶向主动脉及其主要血管,
分支血管。GCA导致血管闭塞性疾病,导致失明和中风。约有半数患者
发生GCA动脉炎,一种由于主动脉夹层和动脉瘤形成而可能危及生命的并发症。
潜在的疾病过程是肉芽肿性动脉炎,具有CD4 T细胞、巨噬细胞和多核
巨细胞浸润到血管壁中,引起适应不良的血管壁重塑,伴有新血管生成和管腔-
闭塞性内膜增生
我们已经确定了癌基因NOTCH 1在CD4 T细胞中的异常表达是CD4 T细胞中的一个关键异常。
GCA患者的免疫系统。在这里,我们将检验NOTCH信号转换为
通过抑制线粒体琥珀酸酶将保护性免疫转化为病原性免疫
脱氢酶(SDH)和截短三羧酸(TCA)循环。三氯乙酸循环的碎片化
然后导致代谢中间产物琥珀酸的积累,琥珀酸被释放到组织中,
网站和功能作为第二信使。我们认为NOTCH 1hi SDHlo CD4分泌的琥珀酸
T细胞靶向周围细胞以重定向T效应细胞分化,以诱导多核细胞分化。
巨噬细胞和促进微血管新生。我们已经汇集了关键的有利资源,
机械地研究NOTCH指示的琥珀酸释放如何增强血管炎症;包括
临床上良好表型的GCA患者的大队列和诱导血管炎的嵌合小鼠模型
通过体内研究证实体外数据。目标1将定义分子
导致NOTCH依赖性SDH功能丧失的机制,建立在初步研究的基础上,
通过N6-甲基腺苷修饰调节SDH mRNA稳定性的RNA结合蛋白。目标2A
研究琥珀酸如何机械地重编程T效应细胞分化。实验旨在
研究琥珀酸如何麻痹NF-κ B抑制剂A20/TNFAIP3以释放NF-κ B信号传导,
诱导多功能效应T细胞(Thpoly),包括共产生IFN-γ、IL-17、TNF-α、IL-21和
IL-22。目的2B将确定NOTCH指导的琥珀酸如何改变巨噬细胞功能,特别是通过
驱动组织破坏性多核巨细胞的形成。我们将描述琥珀酸如何使一个强大的
DNA损伤反应及其如何通过干扰纺锤体促进核分裂和停止胞质分裂
装配检查点。目的2C关注琥珀酸在诱导促血管生成内皮细胞(EC)中的作用
表型,并将探讨如何琥珀酸训练EC迁移,增殖,并失去其屏障功能。目标3
将从工作台连接到床边,并将测试是否抑制琥珀酸生产,
阻断上游酶α-酮戊二酸脱氢酶可以成功地治疗体内血管炎。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cornelia M. Weyand其他文献
Commentary Ectopic Lymphoid Organogenesis A Fast Track for Autoimmunity
异位淋巴器官发生是自身免疫的快车道
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Cornelia M. Weyand;P. Kurtin - 通讯作者:
P. Kurtin
Metabolic checkpoints in rheumatoid arthritis
类风湿关节炎中的代谢检查点
- DOI:
10.1016/j.semarthrit.2024.152586 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:4.400
- 作者:
Cornelia M. Weyand;Jörg J. Goronzy - 通讯作者:
Jörg J. Goronzy
Immune aging – A mechanism in autoimmune disease
免疫衰老——自身免疫性疾病中的一种机制
- DOI:
10.1016/j.smim.2023.101814 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:7.800
- 作者:
Yanyan Zheng;Qingxiang Liu;Jorg J. Goronzy;Cornelia M. Weyand - 通讯作者:
Cornelia M. Weyand
Rejuvenating the immune system in rheumatoid arthritis
在类风湿性关节炎中使免疫系统恢复活力
- DOI:
10.1038/nrrheum.2009.180 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:32.700
- 作者:
Cornelia M. Weyand;Hiroshi Fujii;Lan Shao;Jörg J. Goronzy - 通讯作者:
Jörg J. Goronzy
Hypertension leads to end organ inflammation in humanized mice
- DOI:
10.1016/j.jash.2015.03.287 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:
- 作者:
William G. McMaster;Mohamed A. Saleh;Hana A. Itani;Allison E. Norlander;Cornelia M. Weyand;Meena S. Madhur;Daniel J. Moore;David G. Harrison - 通讯作者:
David G. Harrison
Cornelia M. Weyand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cornelia M. Weyand', 18)}}的其他基金
Metabolic Regulation of Inflammatory Immune Responses in Cardiovascular Disease
心血管疾病炎症免疫反应的代谢调节
- 批准号:
9978626 - 财政年份:2016
- 资助金额:
$ 58.37万 - 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
- 批准号:
10316892 - 财政年份:2014
- 资助金额:
$ 58.37万 - 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
- 批准号:
8629407 - 财政年份:2014
- 资助金额:
$ 58.37万 - 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
- 批准号:
10655562 - 财政年份:2014
- 资助金额:
$ 58.37万 - 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
- 批准号:
8789332 - 财政年份:2014
- 资助金额:
$ 58.37万 - 项目类别:
DNA Repair and Mitochondrial Dysfunction in T Cell Aging
T 细胞衰老过程中的 DNA 修复和线粒体功能障碍
- 批准号:
10543729 - 财政年份:2013
- 资助金额:
$ 58.37万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 58.37万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 58.37万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 58.37万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 58.37万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 58.37万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 58.37万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 58.37万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 58.37万 - 项目类别:
Collaborative R&D