Rule-based machine learning to address heterogeneity in high-dimensional survival data
基于规则的机器学习解决高维生存数据的异质性
基本信息
- 批准号:10478828
- 负责人:
- 金额:$ 2.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2022-12-05
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAgeAlgorithmsAlkylating AgentsArchitectureAutomobile DrivingBiologicalBrain NeoplasmsCancer PrognosisCellsClinicalComplexCox ModelsCpG Island Methylator PhenotypeDNADNA IntegrationDNA MethylationDNA SequenceDNA Sequence AlterationDataData SetDevelopmentDimensionsDiseaseDisease OutcomeDrug TargetingElementsEpigenetic ProcessFoundationsGenesGeneticGenetic EpistasisGenetic HeterogeneityGenetic ModelsGenetic TranscriptionGenomicsGliomaHeadHeritabilityHeterogeneityHistonesHypermethylationIncidenceInformaticsInterventionMGMT geneMachine LearningMalignant - descriptorMalignant NeoplasmsMethodologyMethodsMethylationMicroRNAsModelingModificationMolecularMultiomic DataOutcomeOutputPathway AnalysisPathway interactionsPatternPerformancePersonsPharmacologyPhenotypePlayPrecision therapeuticsPrediction of Response to TherapyPrimary Brain NeoplasmsPrognosisPromoter RegionsProteomicsRNAResearchResearch PersonnelRiskSample SizeSingle Nucleotide PolymorphismSomatic MutationSystemTestingThe Cancer Genome AtlasTrainingTreatment EfficacyUpdateValidationVisualVisualizationVisualization softwarebasecancer heterogeneitycancer riskcancer typedata modelingdeep learningdisorder riskepigenomicsexperiencefeature selectionforestgenetic analysisgenetic architecturegenetic epidemiologygenome wide association studygenome wide methylationgenomic datahigh dimensionalityimprovedinnovationinsightlarge datasetslearning classifiermachine learning methodmultidimensional datamultiple omicsnovelpersonalized approachpersonalized carepotential biomarkerpreservationpromoterskillssuccesssurvival predictiontemozolomidetherapeutic targettherapy resistanttooltranscriptomicstreatment responsetreatment strategytumortumor progression
项目摘要
Project Summary
In the post-genomic era, researchers are met with an abundance of data to analyze and interpret. Genome-
wide association analyses (GWAS) often boast millions of single-nucleotide polymorphisms (SNPs), alongside
increasingly large epigenomic, transcriptomic, proteomic (multi-omic) and other data sets. While the current
standard in genetic epidemiology emphasizes increased sample sizes, we propose that substantial progress
can be made by developing improved methods to analyze the vast amount of multi-omic data that currently
exists. A number of methodological challenges including dimensionality and the multiple testing burden have
limited the success of many approaches thus far. Furthermore, only considering simple, linear associations
leaves out the more likely scenario of complex genetic and multi-omic relationships driving risk and outcomes
in common diseases. Heterogeneity is just one of the complex mechanisms that underlies disease risk and
outcomes, but is arguably among the most difficult to model and detect. This project tackles this and other
challenges in glioma, a highly heterogeneous cancer type. Improving upon available treatment strategies in
cancer and glioma specifically will undoubtedly require a full characterization of genetic heterogeneity and
epigenetic mechanisms. In addition to confronting the dimensionality of genetic and epigenetic data using a
feature selection strategy that can detect both main effects and interaction and preserve heterogeneity, we will
modify an existing method for detecting heterogeneity to accommodate censored survival data. First, in Aim 1,
we will use simulated genetic survival data to establish the utility of a Relief-based feature selection algorithm
in capturing complex genetic architectures (i.e., main effects, heterogeneity, and epistasis). We will compare it
against standard approaches for high-dimensional feature selection of survival data. Aim 2 updates a learning
classifier system (LCS), a type of rule-based machine learning that uses IF/THEN rules to model complex and
heterogeneous problem spaces. To our knowledge, no LCS that handles censored survival data has been
developed to date. After testing our survival LCS on simulated data and comparing it to standard survival
methods, in Aim 3 we will implement it using somatic mutation and methylation data from the TCGA glioma
dataset. Finally, as part of Aim 3, we will perform a pathway analysis using the LCS output in an effort to
identify common biological pathways underlying heterogeneous associations. We will also utilize a network
visualization tool to better understand interactions between features and provide a visual interpretation of the
results. Findings from this project will lay the foundation for precision care and treatment of glioma. Our
innovative approach to high-dimensional, heterogeneous survival data will be both generalizable and
interpretable, qualities that are missing from current machine learning approaches. This project and the
accompanying training plan undeniably provide an ideal setting to develop the skills and experience necessary
to become and independent investigator at the forefront of genetic epidemiology and informatics.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexa Abigail Woodward其他文献
Alexa Abigail Woodward的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 2.51万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 2.51万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 2.51万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 2.51万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 2.51万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 2.51万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 2.51万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 2.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 2.51万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 2.51万 - 项目类别:
Research Grants














{{item.name}}会员




