Multilayer Device for Sequencing DNA Through a Solid-State Nanopore
通过固态纳米孔对 DNA 进行测序的多层装置
基本信息
- 批准号:10483455
- 负责人:
- 金额:$ 14.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-23 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressArchitectureArticular Range of MotionBiologicalBuffersCaliberComplexCustomDNADNA Microarray ChipDNA SequenceDNA sequencingData AnalysesDetectionDevicesDiagnosisDiscriminationElectric CapacitanceElectrodesElectrolytesElementsEntropyEnzymesFaceFinite Element AnalysisFreedomGeometryGlassGoalsGrantGrowthHeightImageIonsLengthLettersMachine LearningMeasurementMeasuresMechanicsMembraneMethodsModelingMolecularMotionNoiseNucleotidesOpticsPhasePhotonsPolymerasePore ProteinsPricePublic HealthPythonsResearchResistanceRunningShipsSignal TransductionSingle-Stranded DNASmall Business Innovation Research GrantSpeedStochastic ProcessesStretchingSystemTechniquesTechnologyTemperatureThickThinnessTimeUnited States National Institutes of Healthbasecostdesigndetection platformdisorder preventionexperiencefeedingfluorophoreimprovednanoporenew technologyoperationpragmatic implementationsensorsequencing platformsilicon nitridesingle moleculesolid statetemporal measurementtranscriptome sequencingvoltagewhole genome
项目摘要
Project Summary
To improve DNA sequencing capabilities with respect to accuracy, robustness and speed and to
develop practical methods of RNA sequencing, this NIH R43 Phase I project focuses on using
multilayer-design solid-state pore sensors on low-noise glass chips, towards DNA sequencing
and direct RNA sequencing. The basic concept behind nanopores involves using an applied
voltage to drive single-stranded DNA molecules through a narrow nanopore, which separates
chambers of electrolyte solution. This voltage also drives a flow of electrolyte ions through the
pore, measured as an electric current. When molecules pass through the nanopore they modify
the flow of ions, and structural information can be extracted by analysis of the duration and
magnitude of the resulting current reductions. Nanopore in atomically-thin 2D membranes
improve the signal-to-noise ratio for molecular detection and analysis because the resistance to
the ionic flow through a pore increases linearly with the pore thickness, so both the magnitudes
of the ionic current and the blocked current with a translocating molecule increase with decreasing
nanopore height. Specifically, we seek to make solid-state ionic-current based nanopore
sequencing possible by combining several components to make a modular multilayer on-chip
solid-state ultrathin-pore system that limits the range of motion for DNA in the sensing region of
a pore. We do so by creating devices containing a second layer of silicon nitride holes, parallel to
primary layer containing the sensing 2D pore that orient DNA within a device to a restricted
geometry, yet allow the free motion of ions to maintain a high signal-to-noise ratio. We propose a
specific multilayer concept with two independent electrical connections, and corresponding chip
device architecture to achieve this goal. In this method, there is a central, highly sensitive 2D
pore. A secondary layer is a nanopore array (NPA) sharing the same electrode pair as the
sensing 2D pore. These pores are constructed parallel to the “sensing” pore and serve as
“feeding” elements to stretch and feed DNA into the sensing pore. We outline the practical
implementation of this concept with Si-based technology, including advantages for DNA (and
biomolecule) sequencing (analysis) in solution. Our approach eliminates the need for any
enzymes and enables DNA molecules to be guided through robust and long-lasting nanopores,
facilitated by the custom-designed “array chip”, and at potentially record high sequencing speeds.
Illustration 1: Proposed multilayer device
concept for this NIH R43 Phase I proposal,
relying on minimization of DNA entropic
motion: a guiding array and an optimized 2D
pore.
1
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David John Niedzwiecki其他文献
David John Niedzwiecki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David John Niedzwiecki', 18)}}的其他基金
METHYL-SENTRY: Proposed feasibility study of a nanopore diagnostic tool with rapid automated measurement of cell free DNA methylation state for clinical cancer evaluation
METHYL-SENTRY:拟议的纳米孔诊断工具的可行性研究,可快速自动测量无细胞 DNA 甲基化状态,用于临床癌症评估
- 批准号:
10708833 - 财政年份:2022
- 资助金额:
$ 14.14万 - 项目类别:
Nanochannel-nanopore based DNA sequencing with DNA motion control and reduced entropic noise
基于纳米通道-纳米孔的 DNA 测序,具有 DNA 运动控制和降低的熵噪声
- 批准号:
10010924 - 财政年份:2020
- 资助金额:
$ 14.14万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Research Grant