Accurate and rapid assessment of sarcopenia in older adults through electrical impedance myography
通过电阻抗肌电图准确快速评估老年人肌少症
基本信息
- 批准号:10484558
- 负责人:
- 金额:$ 88.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAdoptionAdultAgingAlgorithmsAmericanAssessment toolAtrophicBilateralCaringClinicalCollaborationsComplexConnective TissueDataData ScienceData SetDependenceDevelopmentDevicesDiagnosisDiagnosticDual-Energy X-Ray AbsorptiometryElderlyElectric StimulationExtensorFatty acid glycerol estersFrequenciesGaitGrantHealthHealth PersonnelHealthcareHistologicHydration statusImpairmentIndividualInfiltrationInjuryInstitutesKneeLassoLegLibrariesLower ExtremityMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMethodsModelingModernizationMonitorMuscleMuscle ContractionMuscle WeaknessMuscle functionMyographyNeuromuscular DiseasesOutcomePathologyPhaseProductionResearchResearch PersonnelSkeletal MuscleSmall Business Innovation Research GrantSystemTechniquesTechnologyTestingTimeTrainingValidationWorkX-Ray Computed Tomographyage relatedage-related muscle lossalgorithm developmentbaseclinical research sitecloud basedcohortcost effectivedeconditioningelectric impedancefall riskfunctional statusimprovedlean body massmortalitymuscle formmuscle strengthprediction algorithmquadriceps musclesarcopeniascreeningtoolvirtualwasting
项目摘要
Project Summary
Forty-two percent of older adults (OAs) have one or more physical limitations that are essential for in-
dependence. Age-related muscle wasting and weakness (sarcopenia) are important contributors to these phy-
sical impairments, including most notably gait impairment. Moreover, sarcopenia is closely associated with an
increased risk of falls and other injuries leading to loss of independence and increased mortality. Healthcare
providers of OAs need improved means of evaluating lower extremity muscle condition for the development of
sarcopenia. MRI, CT, and DXA provide considerable information, but none are office-based and DXA only
provides information on lean body mass and fat content. In this application, we advance electrical
impedance myography (EIM) for assessment of lower extremity muscle condition in OAs. EIM relies
upon application of directionally focused, multi-frequency electrical current to specific muscles or muscle
groups. By applying the technology in such a localized fashion, it is virtually unaffected by hydration status or
other issues that commonly impact other bioimpedance-based methods. EIM has been studied for nearly two
decades in the field of neuromuscular disease and has been shown to be sensitive to a variety of alterations in
skeletal muscle including atrophy, degeneration, and simple deconditioning. Taking EIM one step further and
applying machine learning (ML) techniques to the complex multifrequency EIM data set, it even becomes
possible to predict histological features, including myofiber size, fat, and connective tissue content. Given this
demonstrated capability, EIM has the potential to serve as a convenient, office-based approach for assessing
muscle health in OAs. In this direct-to-Phase 2 SBIR application, Myolex proposes to establish EIM, via
its new device, the mScan, in conjunction with machine learning cloud-based platform, as a means of
obtaining MRI-like quantitative data in muscle of OAs. In Specific Aim 1, in conjunction with aging expert
researchers at 3 different clinical sites, we will collect MRI and EIM data on a cohort of healthy older adults,
along with standard functional measures as well as measuring specific force, via electrically stimulated muscle
contraction. Using this data, in Specific Aim 2, we will develop predictive algorithms, via the penalized
regression technique of Lasso (least absolute shrinkage and selection operator), leveraging EIM values to
predict muscle volume, muscle specific force, and muscle fatty infiltration. We will then incorporate these
algorithms into a cloud-based engine that will provide meaningful, easy-to-interpret values. At the conclusion of
this proposed work, we will have developed an accurate, powerful system that clinicians and researchers can
use for the rapid assessment of OA muscle health.
项目摘要
42%的老年人(OAS)有一个或多个身体缺陷,这些限制对老年人的健康至关重要。
依赖。与年龄相关的肌肉萎缩和虚弱(肌萎缩症)是导致这些肌肉萎缩的重要因素。
体征障碍,包括最明显的步态障碍。此外,骨质疏松症与
跌倒和其他伤害的风险增加,导致丧失独立性和死亡率增加。医疗保健
OAS的提供者需要改进的方法来评估下肢肌肉状况,以发展
石棺减少症。MRI、CT和DXA提供了大量信息,但没有一个是基于办公室和DXA的
提供有关瘦体重和脂肪含量的信息。在这个应用中,我们推进了电气
阻抗肌图(EIM)在评估OAS患者肢体肌肉状况中的应用EIM依赖
在向特定肌肉或肌肉施加定向聚焦的多频电流时
组。通过以这种本地化的方式应用该技术,它几乎不受水化状态或
通常影响其他基于生物阻抗的方法的其他问题。对EIM的研究已经有近两年的历史了
在神经肌肉疾病领域研究了几十年,并已被证明对多种变化敏感
骨骼肌包括萎缩、变性和简单的去条件反射。使EIM更进一步,并
将机器学习(ML)技术应用于复杂的多频率EIM数据集,它甚至成为
有可能预测组织学特征,包括肌纤维大小、脂肪和结缔组织含量。鉴于此,
经过验证的能力,EIM有可能成为一种方便的、基于办公室的评估方法
OAS中的肌肉健康。在这个直接到第二阶段SBIR的应用中,Myolex建议通过以下方式建立EIM
其新设备MSCAN与基于云的机器学习平台相结合,作为一种手段
获取OAS肌肉的MRI样定量数据。在具体目标1中,与老龄化专家合作
3个不同临床站点的研究人员,我们将收集一组健康老年人的MRI和EIM数据,
以及标准的功能测量以及通过电刺激肌肉测量比力
收缩。使用这些数据,在特定的目标2中,我们将开发预测算法,通过惩罚
套索回归技术(最小绝对收缩和选择算子),利用EIM值来
预测肌肉体积、肌肉比力和肌肉脂肪渗透。然后我们将合并这些内容
算法集成到一个基于云的引擎中,提供有意义的、易于解释的价值。在……结束时
这项拟议的工作,我们将开发出一种准确、强大的系统,临床医生和研究人员可以
用于快速评估骨性关节炎肌肉健康状况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William David Arnold其他文献
William David Arnold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William David Arnold', 18)}}的其他基金
Accurate and rapid assessment of sarcopenia in older adults through electrical impedance myography
通过电阻抗肌电图准确快速评估老年人肌少症
- 批准号:
10668482 - 财政年份:2022
- 资助金额:
$ 88.94万 - 项目类别:
Accurate and rapid assessment of sarcopenia in older adults through electrical impedance myography - Development of Regulatory Plans Supplement
通过电阻抗肌动描记法准确、快速地评估老年人的肌少症 - 制定监管计划补充材料
- 批准号:
10700526 - 财政年份:2022
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10810941 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10407020 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10612078 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10618019 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10543345 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10641197 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Social Isolation and Loss of Physical Function: Defining a Novel Neuromuscular Phenotype
社会孤立和身体功能丧失:定义一种新的神经肌肉表型
- 批准号:
10057744 - 财政年份:2020
- 资助金额:
$ 88.94万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 88.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 88.94万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 88.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 88.94万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 88.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 88.94万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 88.94万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 88.94万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 88.94万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 88.94万 - 项目类别:
Standard Grant