Harnessing Supercoiling to Regulate DNA Activity
利用超螺旋调节 DNA 活性
基本信息
- 批准号:10482361
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAntibioticsAntineoplastic AgentsArtsBindingBiochemicalBiological AssayBiophysicsCell physiologyCellsChromatin LoopCoupledCryoelectron MicroscopyDNADNA StructureDNA TopoisomerasesDNA biosynthesisDataDrug InteractionsDrug TargetingEngineeringEnzymesFluorescenceFrequenciesGene DeliveryGene Transduction AgentGenetic TranscriptionGenomic InstabilityGoldHumanImaging DeviceInfectionKnowledgeLibrariesMalignant NeoplasmsMethodsMolecular ConformationMonosaccharidesPharmaceutical PreparationsPhysiologicalPropertyResearchSculptureShapesStructureSuperhelical DNATechniquesTextbooksTherapeuticTimeTopoisomeraseVisionWorkanalytical ultracentrifugationantimicrobial drugclinical applicationdesign and constructiondrug actiondrug efficacyexperimental studyfundamental researchgene therapyhuman diseaseimprovedin vivoinhibitorinnovationinsightnanoparticlenervous system disordernovelnovel therapeuticsrepairedscreeningtargeted agentthree dimensional structuretomographytooluptake
项目摘要
This MIRA proposal presents my vision for how my research will evolve over the next five years and
culminates from our long-term, rigorous studies of the diverse structures and properties of supercoiled DNA
and its interaction with topoisomerases. Within cells, DNA is supercoiled and often constrained into small DNA
loops that can be experimentally recapitulated with supercoiled DNA minicircles small enough for use in a wide
range of biophysical and biochemical assays. The methods we have developed and extensive knowledge
acquired thus far will be invaluable for our proposed studies of DNA topoisomerases, actions of important
antimicrobial and anticancer agents that target them, the utility of engineered DNA minicircles as gene therapy
vectors, and supercoiling-induced noncanonical DNA structures that are implicated in human disease. We will
first utilize state-of-the-art electron cryo-microscopy and cryo-tomography to determine the 3-D structure of
topoisomerases bound to physiologically relevant DNA substrates. This approach will be coupled with
comprehensive quantitative assays using electrophoretic and fluorescence techniques and analytical
ultracentrifugation to characterize how DNA supercoiling so strongly affects topoisomerase-drug interactions.
Many topoisomerases, particularly those that are important drug targets, preferentially act on positively
supercoiled DNA. Consequently, corresponding anti-topoisomerase drugs interact with positively supercoiled
DNA as well, although research of chemotherapeutics that target topoisomerases has largely disregarded the
effect of supercoiled DNA on drug action. We plan to identify new inhibitors of validated drug targets by
screening, for the first time, active topoisomerase bound to positively supercoiled DNA against a library of over
5 billion diverse compounds. We will next apply our innovative tools and compelling data of how supercoiling,
curvature, and sequence dictate DNA conformation to design and construct DNA nanoparticles with specific,
desired shapes that are ideal for cellular uptake needed in a variety of clinical applications. Existing
nanoparticles, such as those composed of gold or monosaccharides, are inert; therefore, we propose utilizing
DNA minicircles, as both the vehicle and cargo in one, for gene therapy to overcome many of the barriers to
effective gene delivery. Finally, we will employ DNA minicircles to investigate how supercoiling promotes the
formation of non-B-DNA structures, which are known to impact DNA replication, repair, transcription, yet their
in vivo frequency is controversial. This work is transformative, as our novel DNA minicircles, advanced imaging
tools, and quantitative analyses will enable us to achieve unprecedented and previously unattainable insights
into the structure and function of supercoiled DNA. Our fundamental research will continue to challenge the
paradigm that DNA is passively acted upon by topoisomerases but instead drives numerous critical cellular
processes. Moreover, this project has substantial human therapeutic applications related to anti-topoisomerase
drug efficacy, improved gene therapy delivery, and mitigating genomic instability caused by non-B-DNA forms.
这个 MIRA 提案展示了我对未来五年的研究将如何发展的愿景,以及
我们对超螺旋 DNA 的多种结构和特性进行了长期、严格的研究
及其与拓扑异构酶的相互作用。在细胞内,DNA 呈超螺旋状,通常被限制成小 DNA
可以用足够小的超螺旋 DNA 微环在实验上重现这些环,以便在广泛的应用中使用
一系列生物物理和生化测定。我们开发的方法和广泛的知识
迄今为止获得的信息对于我们提出的 DNA 拓扑异构酶、重要作用的研究将是无价的。
针对它们的抗菌剂和抗癌剂,工程 DNA 小环作为基因治疗的用途
载体,以及超螺旋诱导的与人类疾病有关的非规范 DNA 结构。我们将
首先利用最先进的电子冷冻显微镜和冷冻断层扫描来确定
拓扑异构酶与生理相关的 DNA 底物结合。这种方法将与
使用电泳和荧光技术进行综合定量测定和分析
超速离心来表征 DNA 超螺旋如何强烈影响拓扑异构酶与药物的相互作用。
许多拓扑异构酶,特别是那些作为重要药物靶点的拓扑异构酶,优先发挥积极作用
超螺旋DNA。因此,相应的抗拓扑异构酶药物与正超螺旋相互作用
DNA 也是如此,尽管针对拓扑异构酶的化疗研究在很大程度上忽视了
超螺旋DNA对药物作用的影响。我们计划通过以下方式识别经过验证的药物靶点的新抑制剂
首次针对超螺旋 DNA 文库筛选与正超螺旋 DNA 结合的活性拓扑异构酶
50 亿种不同的化合物。接下来,我们将应用我们的创新工具和令人信服的数据来了解超螺旋如何,
曲率和序列决定 DNA 构象,以设计和构建具有特定、
适合各种临床应用所需的细胞摄取的理想形状。现存的
纳米颗粒,例如由金或单糖组成的纳米颗粒,是惰性的;因此,我们建议利用
DNA小环作为载体和货物合二为一,基因治疗克服了许多障碍
有效的基因传递。最后,我们将利用 DNA 小环来研究超螺旋如何促进
非 B-DNA 结构的形成,已知会影响 DNA 复制、修复、转录,但它们的作用
体内频率存在争议。这项工作具有变革性,因为我们新颖的 DNA 小环、先进的成像技术
工具和定量分析将使我们能够获得前所未有的、以前无法获得的见解
深入了解超螺旋 DNA 的结构和功能。我们的基础研究将继续挑战
DNA 被动地受到拓扑异构酶的作用,但相反驱动许多关键的细胞
流程。此外,该项目具有与抗拓扑异构酶相关的大量人类治疗应用
药物疗效、改善基因治疗递送以及减轻非 B-DNA 形式引起的基因组不稳定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LYNN ZECHIEDRICH其他文献
LYNN ZECHIEDRICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LYNN ZECHIEDRICH', 18)}}的其他基金
Harnessing Supercoiling to Regulate DNA Activity
利用超螺旋调节 DNA 活性
- 批准号:
10205924 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Harnessing Supercoiling to Regulate DNA Activity
利用超螺旋调节 DNA 活性
- 批准号:
10705655 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Harnessing Supercoiling to Regulate DNA Activity
利用超螺旋调节 DNA 活性
- 批准号:
10798577 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Molecular Mechanisms Underlying Fluoroquinolone Susceptibility and Resistance
氟喹诺酮类药物敏感性和耐药性的分子机制
- 批准号:
8941338 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
S2: Molecular Mechanisms Underlying Fluoroquinolone Susceptibility and Resistance
S2:氟喹诺酮类药物敏感性和耐药性的分子机制
- 批准号:
9539894 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Molecular Mechanisms Underlying Fluoroquinolone Susceptibility and Resistance
氟喹诺酮类药物敏感性和耐药性的分子机制
- 批准号:
9276741 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Molecular Mechanisms Underlying Fluoroquinolone Susceptibility and Resistance
氟喹诺酮类药物敏感性和耐药性的分子机制
- 批准号:
9276456 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists