Cardiac ryanodine receptor and oxidative stress

心脏兰尼碱受体与氧化应激

基本信息

  • 批准号:
    10482397
  • 负责人:
  • 金额:
    $ 10.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-06 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Abnormal activity of the cardiac ryanodine receptor (RyR2) leads to increased and untimely release of Ca2+ from the sarcoplasmic reticulum (SR), driving Ca2+-dependent arrhythmogenesis that can lead to sudden death in many cardiac disorders. Oxidative modification of RyR2 by reactive oxygen species (ROS) has long been established to enhance the sensitivity of the channels to Ca2+ within the SR (intraluminal Ca2+) in the failing heart. However, both the intracellular source of ROS, as well as the specific redox-sensitive residues of RyR2 which control intraluminal Ca2+ sensitivity, remain elusive. Our initial studies implicate the role of the SR oxidoreductase system in this control, whereby molecular chaperones and enzymes that facilitate protein folding also modulate activity of RyR2. We have identified intraluminal cysteines of RyR2 that elicit functional effects on the channel, as well as an oxidoreductase chaperone that associates with the channel in a redox-dependent manner. Moreover, we found upregulation of oxidoreductase enzyme in rodent models of cardiac disease, and observed RyR2 activity stabilization with pharmacological inhibition of this enzyme. We therefore hypothesize that dysregulation of the SR oxidoreductase system impairs luminal Ca2+ regulation of RyR2 via an ‘intraluminal SR redox sensor’ and promotes arrhythmogenesis. We will test our hypothesis by 1) defining the molecular components of the SR redox sensor that control luminal Ca2+ sensitivity of RyR2, and 2) determining the role of dysregulated SR redox homeostasis in Ca2+-dependent arrhythmogenesis. To address these aims, we will employ a multilevel experimental approach, investigating at the molecular, cellular, and whole heart level. We propose to use heterologous systems, biochemical approaches and human induced pluripotent stem cell cardiomyocyte (hiPSC-CM) technology to identify the RyR2 redox sensor. We also propose to study disease- associated perturbations of the SR oxidoreductase system in rodent models of inherited and acquired Ca2+- dependent arrhythmia, utilizing novel genetic biosensors, as well as adenoviral (AV) and adeno-associated viral (AAV) gain- and loss- of function approaches. With renowned experts in cardiac EC coupling, protein biochemistry and hiPSC-CM technology, The Ohio State University offers an exceptional training environment for the mentored phase of the award to reach these goals. Furthermore, building on my strong background in molecular biology, I will collaborate with an expert in CRISPR-mediated gene editing of hiPSC-CMs to study these mechanisms in a relevant human model. The achievement of the proposed aims will uncover novel regulatory mechanisms of RyR2 regulation, with potential to be therapeutically exploited. This proposal therefore addresses a fruitful and unexplored research area, relevant to a spectrum of cardiovascular diseases, which will lay strong foundations for an independent research career in cardiovascular physiology.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shanna Hamilton其他文献

Shanna Hamilton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shanna Hamilton', 18)}}的其他基金

Cardiac ryanodine receptor and oxidative stress
心脏兰尼碱受体与氧化应激
  • 批准号:
    10833359
  • 财政年份:
    2023
  • 资助金额:
    $ 10.86万
  • 项目类别:
Cardiac ryanodine receptor and oxidative stress
心脏兰尼碱受体与氧化应激
  • 批准号:
    10632861
  • 财政年份:
    2022
  • 资助金额:
    $ 10.86万
  • 项目类别:
Cardiac ryanodine receptor and oxidative stress
心脏兰尼碱受体与氧化应激
  • 批准号:
    10300621
  • 财政年份:
    2021
  • 资助金额:
    $ 10.86万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 10.86万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 10.86万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.86万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了