Molecular Physiology of Mitochondrial Calcium Transporters

线粒体钙转运蛋白的分子生理学

基本信息

  • 批准号:
    10487518
  • 负责人:
  • 金额:
    $ 32.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract The mitochondrial Ca2+ transport system modulates mitochondrial Ca2+ levels to control important cellular processes including ATP generation, cell-death pathways, and buffering of intracellular Ca2+ signals. Malfunction of mitochondrial Ca2+ transport induces cardiac ischemia-reperfusion injury and neurodegeneration, facilitates cancer metastasis, and provokes many other detrimental conditions in human disease. This system includes three major players, the mitochondrial Ca2+ uniporter complex, the Na+/Ca2+ exchanger (mediated by the NCLX protein), and the H+/Ca2+ exchanger (possibly mediated by Letm1). Although the mitochondrial Ca2+ uniporter has been studied extensively, the transport and regulatory mechanisms of the other two Ca2+ exchangers remain mostly unknown. These exchangers are important for physiology, because cardiac-specific deletion of NCLX causes heart failure, and loss of a copy of LETM1 in humans induces epilepsy in the deadly genetic disease Wolf-Hirschhorn syndrome. Here, we propose to study the fundamental mechanisms of these mitochondrial Ca2+ exchangers and their contribution to mitochondrial Ca2+ homeostasis. In Aim 1, we will determine the transmembrane topology and transport mechanisms of Letm1 using a wide range of methods, including functional analysis of liposome-reconstituted proteins, substituted cysteine accessibility scan, single- molecule photobleaching, and co-immunoprecipitation. Furthermore, we will employ new-generation CRISPR prime-editor tools to test the hypothesis that Letm1 is the protein that mediates mitochondrial H+/Ca2+ exchange and that it can load Ca2+ into mitochondria under physiological conditions. In Aim 2, we developed a novel procedure to purify human NCLX and reconstitute the protein in liposomes. This powerful tool will be employed to establish the Na+/Ca2+ exchange stoichiometry, Michaelis-Menten kinetic parameters, and the mechanisms underlying ion recognition. It will also allow us to determine how a small-molecule, membrane- permeant compound CGP-37157 potently inhibits NCLX, thus providing useful information to further improve this drug for potential clinical use. Completing the proposed work will fundamentally improve the scientific knowledge of two mitochondrial Ca2+ transport proteins that play important roles in human pathophysiology, and will pave the way for future endeavors to design new therapeutic strategies to treat debilitating diseases caused by abnormal mitochondrial Ca2+ transport and homeostasis.
项目总结/摘要 线粒体Ca 2+转运系统调节线粒体Ca 2+水平,以控制重要的细胞增殖。 包括ATP生成、细胞死亡途径和细胞内Ca 2+信号缓冲的过程。 线粒体Ca ~(2+)转运功能障碍导致心肌缺血再灌注损伤和神经退行性变, 促进癌症转移,并在人类疾病中引起许多其他有害的状况。该系统 包括三个主要参与者,线粒体Ca 2+单向转运体复合物,Na+/Ca 2+交换器(由 NCLX蛋白)和H+/Ca 2+交换剂(可能由Letm 1介导)。虽然线粒体Ca 2 + 单转运体已被广泛研究,其他两个Ca 2+的运输和调节机制 交换器仍然是未知的。这些交换器对生理学很重要,因为心脏特异性 NCLX的缺失会导致心力衰竭,而人类LETM 1拷贝的缺失会导致致命的癫痫。 遗传性疾病沃尔夫-赫希霍恩综合征在这里,我们建议研究这些的基本机制, 线粒体Ca 2+交换器及其对线粒体Ca 2+稳态的贡献。在目标1中,我们 使用多种方法确定Letm 1的跨膜拓扑结构和转运机制, 包括脂质体重构蛋白的功能分析、取代的半胱氨酸可及性扫描、单- 分子光漂白和免疫共沉淀。此外,我们将采用新一代CRISPR技术, prime-editor工具来检验Letm 1是介导线粒体H+/Ca 2+的蛋白质这一假设 在生理条件下,它可以将Ca 2+负载到线粒体中。在目标2中,我们开发了一个 纯化人NCLX并在脂质体中重构蛋白质的新方法。这个强大的工具将是 用于建立Na+/Ca 2+交换化学计量,Michaelis-Menten动力学参数,和 离子识别的基本机制。它也将使我们能够确定一个小分子,膜- 渗透性化合物CGP-37157有效地抑制NCLX,从而提供有用的信息,以进一步改善 这种药物的潜在临床应用。完成拟议的工作将从根本上提高科学性 了解在人类病理生理学中起重要作用的两种线粒体Ca 2+转运蛋白, 并将为未来设计新的治疗策略来治疗衰弱性疾病铺平道路 由线粒体钙离子转运和稳态异常引起。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ming-Feng Tsai其他文献

Ming-Feng Tsai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ming-Feng Tsai', 18)}}的其他基金

Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
  • 批准号:
    10676910
  • 财政年份:
    2021
  • 资助金额:
    $ 32.26万
  • 项目类别:
Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
  • 批准号:
    10340461
  • 财政年份:
    2021
  • 资助金额:
    $ 32.26万
  • 项目类别:
Molecular mechanisms of the mitochondrial calcium uniporter
线粒体钙单向转运蛋白的分子机制
  • 批准号:
    10440255
  • 财政年份:
    2018
  • 资助金额:
    $ 32.26万
  • 项目类别:
Molecular mechanisms of the mitochondrial calcium uniporter
线粒体钙单向转运蛋白的分子机制
  • 批准号:
    10192757
  • 财政年份:
    2018
  • 资助金额:
    $ 32.26万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了